184 resultados para strong applied electric field
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We study the behavior of the renormalized sextic coupling at the intermediate and strong coupling regime for the phi(4) theory defined in d = 2 dimensions. We found a good agreement with the results obtained by the field-theoretical renormalization-group in the Ising limit. In this work we use the lattice regularization method.
Resumo:
We have measured the effect of an applied magnetic field on the current through thin films of two different organic conjugated polymers that have previously shown to exhibit magnetoresistance, poly(9,9-dioctyl-1,4-fluorenylenevinylene) and poly(9,9-dioctyl-2,7-fluorenylenevinylene). The results show that the magnetic field releases trapped charges from inside the material and enhances the current. We have also performed optical absorption experiments on these polymer films under applied voltage and magnetic field. The results show that the magnetic field produces a change in the optical absorption in the low-energy range associated with deep traps and only under conditions when these traps are likely charged. These two results provide a strong case for the release of trapped charges caused by the magnetic field as being the cause of the magneto resistance in these polymers and possibly in other organic materials where magnetoresistance was recently observed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electron irradiation of solids produces a backemission of secondary electrons (energies between 0 and 50 eV) and reflected primaries (energies between 50 eV and that of the incident beam). For insulators, it is shown that an externally applied positive electric field penetrating into the solid material, energizes electrons generated by the primary irradiation and enables them to travel back to the surface of incidence and be emitted (stimulated secondary emission).
Resumo:
Coherent properties and Rabi oscillations in two-level donor systems, under terahertz excitation, are theoretically investigated. Here we are concerned with donor states in bulk GaAs and GaAs-(Ga,Al)As quantum dots. We study confinement effects, in the presence of an applied magnetic field, on the electronic and on-center donor states in GaAs- (Ga,Al)As dots, as compared to the situation in bulk GaAs, and estimate some of the associated decay rate parameters. Using the optical Bloch equations with damping, we study the time evolution of the Is and 2p(+) states in the presence of an applied magnetic field and of a terahertz laser. We also discuss the role played by the distinct dephasing rates on the photocurrent and calculate the electric dipole transition moment. Results indicate that the Rabi oscillations are more robust as the total dephasing rate diminishes, corresponding to a favorable coherence time.
Resumo:
Lead calcium titanate (Pb1-xCaxTiO3 or PCT) thin films have been thermally treated under different oxygen pressures, 10, 40 and 80 bar, by using the so-called chemical solution deposition method. The structural, morphological, dielectric and ferroelectric properties were characterized by x-ray diffraction, FT-infrared and Raman spectroscopy, atomic force microscopy and polarization-electric-field hysteresis loop measurements. By annealing at a controlled pressure of around 10 and 40 bar, well-crystallized PCT thin films were successfully prepared. For the sample submitted to 80 bar, the x-ray diffraction, Fourier transformed-infrared and Raman data indicated deviation from the tetragonal symmetry. The most interesting feature in the Raman spectra is the occurrence of intense vibrational modes at frequencies of around 747 and 820 cm(-1), whose presence depends strongly on the amount of the pyrochlore phase. In addition, the Raman spectrum indicates the presence of symmetry-breaking disorder, which would be expected for an amorphous (disorder) and mixed pyrochlore-perovskite phase. During the high-pressure annealing process, the crystallinity and the grain size of the annealed film decreased. This process effectively suppressed both the dielectric and ferroelectric behaviour. Ferroelectric hysteresis loop measurements performed on these PCT films exhibited a clear decrease in the remanent polarization with increasing oxygen pressure.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The behavior of plasma and sheath characteristics under the action of an applied magnetic field is important in many applications including plasma probes and material processing. Plasma immersion ion implantation (PIII) has been developed as a fast and efficient surface modification technique of complex shaped three-dimensional objects. The PIII process relies on the acceleration of ions across a high-voltage plasma sheath that develops around the target. Recent studies have shown that the sheath dynamics is significantly affected by an external magnetic field. In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage is applied to a cylindrical target located on the axis of a grounded cylindrical vacuum chamber filled with uniform nitrogen plasma. An axial magnetic field is created by a solenoid installed inside the cylindrical target. The computer code employs the Monte Carlo method for collision of electrons and neutrals in the plasma and a particle-in-cell (PIC) algorithm for simulating the movement of charged particles in the electromagnetic field. Secondary electron emission from the target subjected to ion bombardment is also included. It is found that a high-density plasma region is formed around the cylindrical target due to the intense background gas ionization by the magnetized electrons drifting in the crossed ExB fields. An increase of implantation current density in front of high density plasma region is observed. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The resistivity of a field reversed configuration in a theta-pinch with slow rising current was investigated during the turbulent phase from the moment of field reversal until end of plasma radial implosion. This transport coefficient was obtained in a hydrogen plasma by local measurements with magnetic probe and compared to numerical calculations with Chodura resistivity and evolution of lower hybrid drift instability. The values of resistivity are higher than those predicted by classical binary collision. During early phase of confinement, the doubly layer structure of current sheath in the low electric field machine was theoretically well reproduced with anomalous collision frequency calculated with Chodura resistivity that provides appropriate conditions for onset of lower hybrid drift instability and the regular evolution of pinch. The plasma dynamic, radial profiles of magnetic field during the radial compression and resistivity values were equally close to those observed by the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698405]
Resumo:
The ac and dc driving fields dependence of the dielectric permittivity for the strontium barium niobate relaxor ferroelectric thin films has been investigated. The nonlinear dielectric properties were obtained by using the measurements of the dielectric permittivity of the material as a function of the ac and dc "bias" electric field amplitude in wide frequency (100 Hz-10 MHz) and temperature (50-450 K) intervals. The results hint the existence of a true mesoscopic dielectric relaxor response in the ferroelectric thin film, which is very similar to those observed in bulk relaxor ferroelectrics. An anomalous behavior of the NL dielectric response was observed when submitted to moderate dc electric fields levels,,indicating a crossover from paraelectric to a glasslike behavior on cooling the sample toward the freezing transition. The obtained results were analyzed within the framework of the models proposed in the current literature.
Resumo:
An algebraic reformulation of the Bohr-Sommerfeld (BS) quantization rule is suggested and applied to the study of bound states in one-dimensional quantum wells. The energies obtained with the present quantization rule are compared to those obtained with the usual BS and WKB quantization rules and with the exact solution of the Schrodinger equation. We find that, in diverse cases of physical interest in molecular physics, the present quantization rule not only yields a good approximation to the exact solution of the Schrodinger equation, but yields more precise energies than those obtained with the usual BS and/or WKB quantization rules. Among the examples considered numerically are the Poeschl-Teller potential and several anharmonic oscillator potentials. which simulate molecular vibrational spectra and the problem of an isolated quantum well structure subject to an external electric field.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Strain and vacancy cluster behavior of vanadium and tungsten-doped Ba[Zr(0.10)Ti(0.90)]O(3) ceramics
Resumo:
Strain and vacancy clusters behavior of polycrystalline vanadium (V) and tungsten (W)-doped Ba[Zr(0.10)Ti(0.90)]O(3), (BZT:2%V) and (BZT:2%W) ceramics obtained by the mixed oxide method was evaluated. Substitution of V and W reduces the distortion of octahedral clusters, decreasing the Raman modes. Electron paramagnetic resonance data indicate that the addition of dopants leads to defects and symmetry changes in the BZT lattice. Remnant polarization and coercive field are affected by V and W substitution due the electron-relaxation mode. The unipolar strain E curves as a function of electric field reach its maximum value for BZT:2%V and BZT:2%W ceramics. (c) 2008 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)