93 resultados para stimulation
Resumo:
The ultrasound stimulated and oxalic acid-catalyzed hydrolysis of tetramethoxysilane (TMOS) was studied by means of a heat flux calorimetric method as a function of the initial water/TMOS molar ratio (r) ranging from 2 to 10. The method is based on the time recording of the hydrolysis exothermic heat peak. which takes place in acidulated heterogeneous water-TMOS mixtures under ultrasonic stimulation, accounting for the instantaneous hydrolysis rate. The hydrolysis rate increases from zero up to a maximum value during the heterogeneous step of the process and then diminishes naturally according to the reactant consumption. The total hydrolyzed quantity was found to be slightly increasing with r. The immiscibility gap of the TMOS- water system in the presence of the hydrolysis products has been inferred from the evaluation of the reacted quantity during the heterogeneous step of the reaction and it has been represented in a ternary diagram in the studied r-range.
Resumo:
Objective-To evaluate the effects of 2 remifentanil infusion regimens on cardiovascular function and responses to nociceptive stimulation in propofol-anesthetized cats.Animals-8 adult cats.Procedures-On 2 occasions, cats received acepromazine followed by propofol (6 mg/kg then 0.3 mg/kg/min, IV) and a constant rate infusion (CRI) of remifentanil (0.2 or 0.3 mu g/kg/min,IV) for 90 minutes and underwent mechanical ventilation (phase I). After recording physiologic variables, an electrical stimulus (50 V; 50 Hz; 10 milliseconds) was applied to a forelimb to assess motor responses to nociceptive stimulation. After an interval (>= 10 days), the same cats were anesthetized via administration of acepromazine and a similar infusion regimen of propofol; the remifentanil infusion rate adjustments that were required to inhibit cardiovascular responses to ovariohysterectomy were recorded (phase II).Results-In phase I, heart rate and arterial pressure did not differ between remifentanil-treated groups. From 30 to 90 minutes, cats receiving 0.3 mu g of remifentanil/kg/min had no response to noxious stimulation. Purposeful movement was detected more frequently in cats receiving 0.2 mu g of remifentanil/kg/min. In phase II, the highest dosage (mean +/- SEM) of remifentanil that prevented cardiovascular responses was 0.23 +/- 0.01 mu g/kg/min. For all experiments, mean time from infusion cessation until standing ranged from 115 to 140 minutes.Conclusions and Clinical Relevance-Although the lower infusion rate of remifentanil allowed ovariohysterectomy to be performed, a CRI of 0.3 mu g/kg/min was necessary to prevent motor response to electrical stimulation in propofol-anesthetized cats. Recovery from anesthesia was prolonged with this technique.
Resumo:
Pure and mixed tetramethoxysilane (TMOS) and tetraethoxysilane (TEOS) were hydrolyzed at 35 degrees C, using oxalic acid as a catalyst and ultrasound stimulation. The hydrolysis reaction was carried out in a specially designed device, in which a heat flow steady state, between the ultrasound source and an external thermostatic bath, was maintained, in the absence of reactions. The exothermic hydrolysis causes a time dependent thermal peak. An induction time is apparent in pure TEOS before the hydrolysis peaks starts, which has been explained by the initial immiscibility gap of the TEOS-water system. The induction time was found to be approximately of the same magnitude as in the HCl catalyzed hydrolysis, in spite of the uncertainty accompanying the peak definition. No induction period is apparent in pure TMOS, so that the hydrolysis starts with its maximum rate. Two independent thermal peaks in the mixed TMOS-TEOS samples were found, both associated to the respective hydrolyses of the pure component. The induction time for the TEOS hydrolysis is decreased as more alcohol (and silanol) is produced in the earlier TMOS hydrolysis. This effect is explained by improvement of homogenization by alcohol.
Resumo:
The acid hydrolysis under ultrasound stimulation of solventless tetraethoxysilane(TEOS)-water mixtures was studied at 40 degrees C, by means of a heat flux calorimetric method, as a function of the initial water/TEOS molar ratio (r) ranging from 2 to 10. The method is based on the time record of the exothermic heat peak of hydrolysis, arising after an induction time under ultrasound stimulation, which is a measure of the reaction rate. The hydrolysed quantity was found to be approximately independent of the water/TEOS molar ratio, even for r < 4. Polycondensation reaction takes place mainly for low water/TEOS molar ratio in order to supply water to allow almost complete hydrolysis. The overall process of dissolution and hydrolysis has reasonably been described by a previous modelling. The dissolution process of water in TEOS, under ultrasound stimulation and acid conditions, was found to be rather dependent of the alcohol produced in the hydrolysis reaction instead of the initial water quantity present in the mixture.
Resumo:
A simplified dissolution and reaction modeling was employed to study the hydrolysis of heterogeneous tetraethoxysilane (TEOS)-water-HCl mixtures under ultrasound stimulation. The nominal pH was changed from 0.8 to 2.0. The acid specific hydrolysis rate constant was determined as k = 6.1 mol(-1) 1 min(-1) [H+](-1) at 39 degreesC, in good agreement with the literature. Along the heterogeneous step of the reaction, the ultrasound maintains an additional quantity of water under a virtual state of dissolution besides the water dissolved due to the homogenizing effect of the alcohol produced in the reaction. The forced virtually dissolved water is probably represented by water at the TEOS-water interface during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TEOS phase, while hydrolysis has not started yet, was evaluated as about 290 A. The HCl concentration accordingly increases the hydrolysis rate constant but its fundamental role on the immiscibility gap of the TEOS-water-ethanol system has not been unequivocally established. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The hydrolysis of TMOS in oxalic acid catalyzed reacting TMOS-water mixtures, under ultrasound stimulation, was studied by fitting a simplified dissolution and reaction modeling for samples, the hydrolysis rate of which had been measured in a previous work. The reaction pathway represented in a ternary diagram shows a heterogeneous step for the reaction which gradually progresses until complete homogenization of the system. Besides the water dissolved due to the homogenizing effect of the alcohol, ultrasound maintains a virtual and additional dissolution of water located at the interface between the TMOS and water during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TMOS was evaluated as around 150 Angstrom. The oxalic acid concentration accordingly increases the hydrolysis rate constant but its fundamental role on the solubility of water in TMOS could not unequivocally be established.
Resumo:
The effect of carbachol (80 nmol/mul) injection into the amygdaloid nuclear complex (AMG) on sodium appetite and water intake was studied in male Holtzman rats weighing 240-270 g. Twenty-five satiated rats and 38 water-deprived rats were used in the experiment on water intake. In the experiment on sodium intake, 19 rats were injected with atropine + carbachol and 9 rats with hexamethonium + carbachol. After carbachol injection into the AMG, water intake decreased in rats submitted to 30 h of water deprivation (10.28 +/- 1.04 ml/120 min vs 0.69 +/- 0.22 ml/120 min). The decrease in water intake was blocked by prior local injection of a tropine (20 nmol/1 mul)(11.66 +/- 1.46 ml/120 min vs 0.69 +/- 0.22 ml/120 min), but not of hexamethonium (30 nmol/1 mul), into the AMG. In water-deprived animals, carbachol injection into the AMG caused a decrease in sodium chloride intake (6.16 +/- 1.82 ml/h vs 0.88 +/- 0.54 ml/h) which was blocked by previous injection of hexamethonium but not of a tropine. These results suggest that the cholinergic system of the AMG plays a role in the control of water and salt intake.
Resumo:
Treatment of urinary stress incontinence (USI) by intravaginal electrical stimulation (IES) and pelvic floor physiotherapy represents an alternative to other therapies. The purpose of this work was to evaluate the effectiveness of this treatment inpatients with urinary incontinence. From January 1998 to May 2000, 30 women (mean age 54 years) were studied. All patients had USI and 70% urge incontinence; average follow-up was 7 months. Selection criteria were based on clinical history, objective evaluation of perineal musculature by perineometry, and urodynamics. The treatment protocol consisted of three sessions of IES per week for 14 weeks using INNOVA equipment. Physiotherapy was initiated in the fifth week of IES. A significant decrease in the number of micturitions and urgency was observed after treatment (P<0.01). The pad test showed a reduction in urinary leakage from 13.9 to 5.9 g after treatment (P<0.01). Objective evaluation of perineal muscle strength showed a significant improvement in all patients after treatment (P<0.01). A positive correlation was observed between maximum flow rate (Q(max)) and all three variables: urethral pressure profile at rest and on straining (stop test), and abdominal leak-point pressure (ALPP). A positive correlation was also observed between ALPP and the stop test. Over 100 different surgical and conservative treatments have been tried to manage USI. The majority of these procedures reveal that despite progress already made in this area, there is no ideal treatment. Satisfactory results can be achieved with this method, especially with patients who are reluctant to undergo surgery because of personal or clinical problems.
Resumo:
The objective of this study was to perform a systematic review regarding the effects of transcranial magnetic stimulation (TMS) on the cognitive event-related potential P300. A search was performed of the PubMed database, using the keywords "transcranial magnetic stimulation" and "P300." Eight articles were selected and, after analysis of references, one additional article was added to the list. We found the comparison among studies to be difficult, as the information regarding the effects of TMS on P300 is both scarce and heterogeneous with respect to the parameters used in TMS stimulation and the elicitation of P300. However, 7 of 9 studies found positive results. New studies need to be carried out in order to understand the contribution of these variables and others to the alteration in the latency and amplitude of the P300 wave.