239 resultados para soil physical and chemical properties
Resumo:
The compaction rate, the relation between the density of the wood panel and the density of the wood used for producing the particles, is an indicator of the product's densification. Among the various types of wood panels, particleboards are widely employed in the lumber industry, mainly for the furniture production. This paper presents a study of the relation between the compaction rate and the properties of tensile strength perpendicular to surface, Modulus of Rupture (MOR) and Modulus of Elasticity (MOE) obtained from a static bending test, thickness swelling and water absorption (2 and 24 hours). These properties were calculated according to the Brazilian ABNT, NBR 14810 standard. Particleboards were produced using the species Pinus elliotti and adhesive ureaformaldehyde. The relation was established by a multiple linear regression, and the most appropriate statistical models were determined. The estimated models indicate statistically significant effects of water absorption in 2 hours and MOR in the particleboards' compaction rate.
Resumo:
The objective of this work was to establish physical and chemical characterizations of dovyalis hybrid fruits (Dovyalis abyssinica and D. hebecarpa). Samples of 25 fruits were characterized by evaluation of length and width, weight, percentage and number of seeds per fruit, peel percentage, pulp percentage, total soluble solids (TSS), titratable acidity (TA), vitamin C and TSS/TA ratio. Dovyalis fruit has good physical quality for market with an average of 75% pulp. Vitamin C content averaged 120.3 mg/100 g of fresh fruit, characterizing dovyalis as a good source of vitamin C. © 2005 by The Haworth Press, Inc. All rights reserved.
Resumo:
This study evaluated the effect of microwave energy on the hardness, impact strength and flexural strength of the Clássico, Onda-Cryl and QC-20 acrylic resins. Aluminum die were embedded in metallic or plastic flasks with type III dental stone, in accordance with the traditional packing technique. A mixing powder/liquid ratio was used according to the manufacturer's instructions. After polymerization in water batch at 74°C for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling at room temperature, and submitted to finishing. Specimens non-disinfected and disinfected by microwave irradiation were submitted to hardness, impact and flexural strength tests. Each specimen was immersed in distilled water and disinfected in a microwave oven calibrated to 650 W for 3 min. Knoop hardness test was performed with 25 g load for 10 s, impact test was carried out using the Charpy system with 40 kpcm, and 3-point bending test with a crosshead speed of 0.5 mm/min until fracture. Data were submitted to statistical analysis by ANOVA and Tukey's test (α=0.05). Disinfection by microwave energy decreased the hardness of Clássico and Onda-Cryl acrylic resins, but no effect was observed on the impact and flexural strength of all tested resins.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to evaluate the density, density profile, water swelling and absorption, modulus of elasticity and rupture from static bending, and tensile strength of experimental medium-density fiberboards manufactured using Dendrocalamus giganteus (Munro bamboo). The fiber production was carried out through the chemo-thermo-mechanical pulping process with four different conditions. The panels were made with 10% urea formaldehyde resin based on dry weight of the fibers, 2.5% of a catalyzer (ammonium sulfate) and 2% paraffin. The results indicate that treatments with the highest alkali (NaOH) percentage, time and splinter heating temperature improved the physical properties of the panels. The root-fiber interface was evaluated through scanning electron microscopy in fracture zones, which revealed fibers with thick, inflexible walls. The panels' mechanical properties were affected due to the fiber wall characteristics and interaction with resin. Giant bamboo fiber has potential for MDF production, but other studies should be carried out.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The antimicrobials products from plants have increased in importance due to the therapeutic potential in the treatment of infectious diseases. Therefore, we aimed to examine the chemical characterisation (GC-MS) of essential oils (EO) from seven plants and measure antibacterial activities against bacterial strains isolated from clinical human specimens (methicillin-resistant Staphylococcus aureus (MRSA) and sensitive (MSSA), Escherichia coli, Pseudomonas aeruginosa, Salmonella Typhimurium) and foods (Salmonella Enteritidis). Assays were performed using the minimal inhibitory concentration (MIC and MIC90%) (mg/mL) by agar dilution and time kill curve methods (log CFU/mL) to aiming synergism between EO. EO chemical analysis showed a predominance of terpenes and its derivatives. The highest antibacterial activities were with Cinnamomun zeylanicum (0.25 mg/mL on almost bacteria tested) and Caryophyllus aronzaticus EO (2.40 mg/mL on Salmonella Enteritidis), and the lowest activity was with Eugenia uniflora (from 50.80 mg/mL against MSSA to 92.40 mg/mL against both Salmonella sources and P aeruginosa) EO. The time kill curve assays revealed the occurrence of bactericide synergism in combinations of C. aromaticus and C. zeylanicum with Rosmarinus. officinalis. Thus, the antibacterial activities of the EO were large and this can also be explained by complex chemical composition of the oils tested in this study and the synergistic effect of these EO, yet requires further investigation because these interactions between the various chemical compounds can increase or reduce (antagonism effect) the inhibitory effect of essential oils against bacterial strains.
Resumo:
Agricultural management systems can alter the physical and biological soil quality, interfering with crop development. The objective of this study was to evaluate the physical and microbiological attributes of a Red Latosol, and its relationship to the biometric parameters of the common bean (Phaseolus vulgaris), irrigated and grown under two management systems (conventional tillage and direct seeding), in Campinas in the state of Sao Paulo, Brazil. The experimental design was of randomised blocks, with a split-plot arrangement for the management system and soil depth, analysed during the 2006/7 and 2007/8 harvest seasons, with 4 replications. The soil physical and microbiological attributes were evaluated at depths of 0.00-0.05, 0.05-0.10, 0.10-0.20 and 0.20-0.40 m. The following were determined for the crop: density, number of pods per plant, number of beans per pod, thousand seed weight, total weight of the shoots and harvest index. Direct seeding resulted in a lower soil physical quality at a depth of 0.00-0.05 m compared to conventional tillage, while the opposite occurred at a depth of 0.05-0.10 m. The direct seeding showed higher soil biological quality, mainly indicated by the microbial biomass nitrogen, basal respiration and metabolic quotient. The biometric parameters in the bean were higher under the direct seeding compared to conventional tillage.
Resumo:
Macroalgal seasonality was studied monthly in a second-order stream in the north-west of São Paulo State, S.E. Brazil. Seasonal variation was based on frequency and percentage cover. Seven species were found during the study period, three of which ('Chantransia' stage of Sirodotia delicatula, Homoeothrix juliana and Klebsormidium subtile) were encountered throughout the year and showed well-defined seasonal patterns as well as the highest value of frequency and percentage cover. 'Chantransia' and H. juliana dominated in summer and fall, while for K. subtile winter was the most favourable period. The remaining species (Oscillatoria agardhii, Microcoleus subtorulosus, Oedogonium sp. and Chaetophora elegans) had no clear seasonal pattern, in addition to their low values of frequency and percentage cover. Individually, K. subtile correlated with higher number of physical and chemical variables (oxygen, pH, precipitation, temperature, daylength, conductance and turbidity) than 'Chantransia' and H. juliana (discharge and depth). Principal component analyses revealed that no single variable was responsible for the macroalgal seasonal dynamics. The variables most closely related to seasonal variation of the macroalgal community were daylength, precipitation, discharge, turbidity and dissolved oxygen. Precipitation and flow were suggested as key factors in determining seasonality of the macroalgae. © 1991 Kluwer Academic Publishers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Variações nos atributos do solo dependem da posição do solo na paisagem e processos de drenagem, erosão e deposição. Este estudo objetivou avaliar os atributos físicos e químicos do solo, em uma topossequência de origem basáltica, na região de Batatais (SP). A área possui relevo aplanado e altitude oscilando entre 740 m e 610 m, em região dominada por basaltos. Foi estabelecido caminhamento de 3.000 m, a partir do espigão da vertente, no seu declive mais suave. As superfícies geomórficas foram identificadas e delimitadas conforme critérios topográficos e estratigráficos, com base em intensas investigações detalhadas de campo. Foram coletadas amostras laterais aos perfis modais representativos das diversas superfícies geomórficas (S.G.) da topossequência (S.G. I = topo; S.G. II = meia encosta e sopé de transporte; S.G. III = ombro e sopé de deposição), totalizando 142 amostras. Além disto, foram abertas trincheiras, nos segmentos de vertente inseridos nas superfícies geomórficas mapeadas. As amostras coletadas foram analisadas quanto à densidade do solo, textura, bases trocáveis (Ca2+, K+ e Mg2+), soma de bases, capacidade de troca catiônica, saturação por bases, pH (água e KCl), SiO2, Al2O3, Fe2O3 (ataque por H2SO4), óxidos de Fe livres extraídos com ditionito-citrato-bicarbonato e Fe mal cristalizado extraído com oxalato de amônio. Os resultados revelaram que os solos oriundos de basalto apresentaram atributos físicos e químicos com comportamento dependente das formas do relevo. Com o uso de técnicas estatísticas multivariadas, foi possível distinguir três diferentes ambientes, que equivalem às três superfícies geomórficas.