118 resultados para smooth endoplasmic reticulum
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Studies of morphological and ultrastructural alterations in target organs have been useful for evaluating the sublethal effects of biopesticides regarded as safe for non-target organisms in ecotoxicological analyses. One of the most widely used biopesticides is neem oil, and its safety and compatibility with natural enemies have been further clarified through bioassays performed to analyze the effects of indirect exposure by the intake of poisoned prey. Thus, this study examined the cellular response of midgut epithelial cells of the adult lacewing, Ceraeochrysa claveri, to neem oil exposure via intake of neem oil-contaminated prey during the larval stage. C. claveri larvae were fed Diatraea saccharalis eggs treated with neem oil at concentrations of 0.5%, 1% and 2% throughout the larval stage. The adult females obtained from these treatments were used at two ages (newly emerged and at the start of oviposition) in morphological and ultrastructural analyses. Neem oil was found to cause pronounced cytotoxic effects in the adult midgut, such as cell dilation, emission of cytoplasmic protrusions, cell lysis, loss of integrity of the cell cortex, dilation of cisternae of the rough endoplasmic reticulum, swollen mitochondria, vesiculated appearance of the Golgi complex and dilated invaginations of the basal labyrinth. Epithelial cells responded to those injuries with various cytoprotective and detoxification mechanisms, including increases in cell proliferation, the number of calcium-containing cytoplasmic granules, and HSP 70 expression, autophagic processes and the development of smooth endoplasmic reticulum, but these mechanisms were insufficient for recovery from all of the cellular damage to the midgut. This study demonstrates that neem oil exposure impairs the midgut by causing sublethal effects that may affect the physiological functions of this organ, indicating the importance of studies of different life stages of this species and similar species to evaluate the safe and compatible integrated use of biopesticides.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We investigated the effects of γ-radiation on cells isolated from the longitudinal smooth muscle layer of the guinea pig ileum, a relatively radioresistant tissue. Single doses (up to 50 Gy) reduced the amount of sarcoplasmatic reticulum and condensed the myofibrils, as shown by electron microscopy 3 days post-irradiation. After that, contractility of smooth muscle strips was reduced. Ca2+ handling was altered after irradiation, as shown in fura-2 loaded cells, with elevated basal intracellular Ca2+, reduced amount of intrareticular Ca2+, and reduced capacitive Ca2+ entry. Radiation also induced apoptosis, judged from flow cytometry of cells loaded with proprium iodide. Electron microscopy showed that radiation caused condensation of chromatin in dense masses around the nuclear envelope, the presence of apoptotic bodies, fragmentation of the nucleus, detachment of cells from their neighbors, and reductions in cell volume. Radiation also caused activation of caspase 12. Apoptosis was reduced by the administration of the caspase inhibitor Z-Val-Ala-Asp-fluoromethyl-ketone methyl ester (Z-VAD-FMK) during the 3 day period after irradiation, and by the chelator of intracellular Ca2+, 1,2-bis(o-aminophenoxy)-ethane-N,N,N′,N′-tetraacetic acid (BAPTA), from 1 h before until 2 h after irradiation. BAPTA also reduced the effects of radiation on contractility, basal intracellular Ca2+, amount of intrareticular Ca2+, capacitative Ca2+ entry, and apoptosis. In conclusion, the effects of gamma radiation on contractility, Ca2+ handling, and apoptosis appear due to a toxic action of intracellular Ca2+. Ca2+-induced damage to the sarcoplasmatic reticulum seems a key event in impaired Ca2+ handling and apoptosis induced by γ-radiation. © 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The flutamide antiandrogenic effects oil the Guinea pig male prostate morphology in puberal, post-puberal and adult ages were evaluated in the present study. Daily-treated group animals received flutamide Subcutaneous injection at a dose of 10 mg/Kg body weight for 10 days. The control group animals received a pharmacological vehicle under the same conditions. The lateral prostate was removed, fixed and processed for light and transmission electron microscopy. The results revealed all increase of the acinus diameter in the treated puberal animals and straitness in the stromal compartment around the acini. The epithelial cells exhibited cubic phenotype. In the post-puberal and adult animals, a decrease of the acinus diameter was observed, as well as an increase of the smooth muscle layer and presence of the folds at epithelium. The ultrastructural evaluation of the secretory cells in the treated group demonstrated endomembrane enlargement, mainly in the rough endoplasmic reticulum and Golgi apparatus. In addition, a decrease of the microvilli and alterations in the distribution patterns and density of the stromal fibrillar components were observed. In Conclusion, the flutamide treatment exerts tissue effects oil the lateral prostate, promoting stroma/epithelium alterations.
Resumo:
Glucocorticoid hormones (GCs) have been widely used for the treatment of prostate cancer because of their inhibitory property against tumour growth. However, their mechanism of action in the prostate has received little attention. Excess GCs can lead to peripheral insulin resistance resulting in hyperglycaemia and hyperinsulinaemia. Insulin plays an important role as a cellular stimulant and high levels are related to low levels of androgens. Our objective has been to describe the effects of insulin resistance induced by dexamethasone treatment on the morphology of rat ventral prostate. Mate adult Wistar rats received daily intraperitoneal injections of dexamethasone or saline for five consecutive days after which the rats were killed and the ventral prostate was removed, weighed and prepared for conventional and transmission electron microscopy (TEM). Dexamethasone treatment resulted in atrophy and decreased proliferative activity of prostatic epithelial cells. TEM analysis revealed changes in the epithelium-stroma interface, with some interruptions in the basement membrane. Fibroblasts showed a secretory phenotype with dilated endoplasmic reticulum. Smooth muscle cells exhibited a contractile pattern with 50% atrophy, an irregular membrane and twisted nuclei. Mitochondrial alterations, such as enlarged size and high electron density in the mitochondrial matrix, were also detected in smooth muscle cells. Insulin resistance induced by dexamethasone is thus associated with epithelial atrophy similar to that described for diabetic rats. However, GCs are responsible for morphological changes in the stromal cell population suggesting the activation of fibroblasts and atrophy of the smooth muscle cells.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
It is well known that glucocorticoids induce peripheral insulin resistance in rodents and humans. Here, we investigated the structural and ultrastructural modifications, as well as the proteins involved in beta-cell function and proliferation, in islets from insulin-resistant rats. Adult male Wistar rats were made insulin resistant by daily administration of dexamethasone (DEX; 1mg/kg, i.p.) for five consecutive days, whilst control (CTL) rats received saline alone. Structure analyses showed a marked hypertrophy of DEX islets with an increase of 1.7-fold in islet mass and of 1.6-fold in islet density compared with CTL islets (P < 0.05). Ultrastructural evaluation of islets revealed an increased amount of secreting organelles, such as endoplasmic reticulum and Golgi apparatus in DEX islets. Mitotic figures were observed in DEX islets at structural and ultrastructural levels. Beta-cell proliferation, evaluated at the immunohistochemical level using anti-PCNA (proliferating cell nuclear antigen), showed an increase in pancreatic beta-cell proliferation of 6.4-fold in DEX islets compared with CTL islets (P < 0.0001). Increases in insulin receptor substrate-2 (IRS-2), phosphorylated-serine-threonine kinase AKT (p-AKT), cyclin D(2) and a decrease in retinoblastoma protein (pRb) levels were observed in DEX islets compared with CTL islets (P < 0.05). Therefore, during the development of insulin resistance, the endocrine pancreas adapts itself increasing beta-cell mass and proliferation, resulting in an amelioration of the functions. The potential mechanisms that underlie these events involve the activation of the IRS-2/AKT pathway and activation of the cell cycle, mediated by cyclin D(2). These adaptations permit the maintenance of glycaemia at near-physiological ranges.
Resumo:
Purpose: To evaluate corneal endothelium alterations after applying mitomycin C to the sclera using transmission and scanning electron microscopy, correlating alterations with time, concentration, and evaluation methods. Methods: The corneal endothelium of both eyes of 32 albino rabbits was evaluated and distributed into four groups of 8. Mitomycin C was applied under a scleral flap in the right eye for 5 minutes. Mitomycin C concentrations were 0.5 mg/ml for G1 and G2 and 0.2 mg/ml for G3 and G4. Examinations were performed 15 days after application to G1 and G3, and 30 days after application to G2 and G4. Four cornea in each group were prepared for transmission electron microscopy and four for scanning electron microscopy. Left eyes of all animals were used as controls. Results: Transmission electron microscopy showed corneal endothelium alterations in all groups: rarefied cytoplasm, dilation and fragmentation of rough endoplasmic reticulum cisternae, Golgi apparatus with cisternal dilation, reduced vacuoles, and irregularities of internal membrane more noticeable in G1 and G2. Scanning electron microscopy revealed alterations in all groups except G1: changes in the shape and size of cells and longer filopodial projections. Conclusions: 1-Corneal endothelium alterations were seen at both 0.5 and 0.2 mg/ml concentrations and at 15 and 30 days after mytomicin C application; 2 - Alterations were more intense with higher mytomicin C concentration by transmission electron but not by scanning electron microscopy; 3 - The alterations correlated with time by scanning electron microscopy but not by transmission electron microscopy.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The three types of spermatogonia were confirmed. Type A spermatogonia have a large nucleus and loose chromatin and are poor in endoplasmic reticulum. The second type, B spermatogonia, have rounded and smaller nuclei filled with more electron-dense nucleoplasmic material. The endoplasmic reticulum has the aspect of round or elongated cisterns that are free in the cytoplasm or close to the basement membrane. In contrast, intermediate spermatogonia present chromatin material with intermediate condensation compared with the two previous cell types. Primary spermatocytes are characterized by the presence of intercellular bridges and a synaptonemal complex. In the late pachytene stages, the synaptonemal complex was found to be enveloped by chromatin material.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pearl glands are scattered throughout the lamina of developing leaves and rarely found on adult leaves of Piper regnellii (Piperaceae). The pearl gland is a bicellular secretory trichome composed of a short broad basal cell and a spatula-like, semiglobular apical cell. Four different stages of the pearl grand were determined during its ontogenesis: origin, pre-secretory, secretory and post-secretory. During the pre-secretory stage, mitochondria, ribosomes, dictyosomes, rough endoplasmic reticulum, and plastids with electron dense inclusions were present in the cytoplasm of the apical cell. During the secretory stage, the most remarkable characteristics of the apical cell are the proliferation of dictyosomes and their vesicles, rough endoplasmic reticulum, and modified plastids. At this stage, electron-dense oil drops occur in the plastids as well as scattered within the cytoplasm, proteins and polysaccharides are seen in the plastids, vesicles, and vacuoles. Only polysaccharides are present in the periplasmic space, wall cavities, and on the surface of the apical cell. The polysaccharides are one of the main components of the mucilagenous exudate that covers the developing leaf structures. The apical cell of the senescing trichomes undergoes a progressive degeneration of its cellular components, the plastids being the first organelles to undergo lysis.
Resumo:
The genus Hymenaea is characterized by a great diversity of secretory structures, but there are no reports of colleters yet. The objectives of this study are to report the occurrence and describe the origin and structure of colleters in Hymenaea stigonocarpa Mart. ex Hayne. Shoot apex samples were collected, fixed, and processed for light microscopy, scanning electron microscopy, and transmission electron microscopy as per usual methods. Colleters occur predominantly on the stipule's adaxial side. These structures are found at the base on a narrow strip, corresponding to the median vein up to half the length of the stipule. When present on the abaxial side, they are concentrated at the base and restricted to the margins. Colleters develop from the protoderm; they are elongate and club-shaped. Their body has no stratification; their surface cells differ from the inner cells only in position and presence of cuticle. Colleter cells have thin walls, dense cytoplasm, large nuclei, many mitochondria, rough endoplasmic reticulum, and abundant dictyosomes. Histochemical tests with Ruthenium red showed pectic compounds in the cytosol. In H. stigonocarpa, colleter arrangement is compatible with the hypothesis that they protect shoot apex. In this species, protection is reinforced by the sheath formed by the stipule pairs.