53 resultados para secreted modular calcium binding protein 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type. J. Cell. Physiol. 9999: 1-12, 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of moderate physical training on serum growth hormone (GH), insulin-like growth factor -1 (IGF-1) and binding protein ( IGFBP-3) in experimental diabetic rats was investigated. Male Wistar rats were divided into 4 groups, sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Experimental diabetes was induced of Alloxan (35mg/b.w.) the training program consisted by swimming 5 days/week, 1 h/day, supporting a load of 2.5% b.w., during 6 weeks. Then, the rats were sacrificed and blood was collected for determinations of serum glucose, insulin, GH, IGF-1 and IGFBP-3. Samples of liver were used to evaluate glycogen, protein and DNA contents. The results were analyzed by ANOVA, and Bonferroni test and the significance level was set at 2.5%. Diabetes decreased serum GH, IGF-1, IGFBP-3 and liver glycogen stores in SD group. Physical training promoted increase in serum IGF-1 in both TC and TD groups (SC=82 +/- 15; TC= 1 03 +/- 13; SD=77 +/- 16; TD= 112 +/- 29 ng/ml) and liver glycogen store in TD group when compared to SD (SC=5.2 +/- 1.2; TC= 6.2 +/- 1; SD=2 +/- 0.5; TD=5 +/- 1.8 mg/100mg). Therefore, physical training contributes to the increase in liver glycogen content and to rise of insulin-like growth factor level in diabetic rats. It was concluded that moderate physical training promotes important adaptations related to GH-IGF-1 axis in diabetic organisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrophile Ca2+ is an essential multifunctional co-factor in the phospholipase A(2) mediated hydrolysis of phospholipids. Crystal structures of an acidic phospholipase A(2) from the venom of Bothrops jararacussu have been determined both in the Ca2+ free and bound states at 0.97 and 1.60 angstrom resolutions, respectively. In the Ca2+ bound state, the Ca2+ ion is penta-coordinated by a distorted pyramidal cage of oxygen and nitrogen atoms that is significantly different to that observed in structures of other Group I/II phospholipases A(2). In the absence of Ca2+, a water molecule occupies the position of the Ca2+ ion and the side chain of Asp49 and the calcium-binding loop adopts a different conformation. (c) 2005 Elsevier SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In five male cirrhotic patients (Child A) and in four age- and sex-matched healthy control subjects, whole-body protein turnover was measured using a single oral dose of N-15-glycine as a tracer and urinary ammonia as end product. Subjects were studied in the fasting and feeding state, with different levels of protein and energy intake. The patients were underweight and presented lower plasma transthyretin and retinol-binding protein levels. When compared with controls, the kinetic studies showed patients to be hypometabolic in the fasting (Do) state and with the control diet [D-1 = (0.85 g of protein/154 kJ). kg(-1). day(-1)]. However, when corrected by body weight, the kinetic differences between groups disappeared, whereas the N-retention in the feeding state showed better results for the patients due mainly to their efficient breakdown decrease. When fed high-level protein or energy diets [D-2 = (0.9 g protein/195 kJ) and D-3 = (1.56 g protein/158 kJ). kg(-1). day(-1)], the patients showed D-0 = D-1 = D-2 < D-3 for N-flux and (D-0 = D-1) < D-3 (D-2 is intermediary) for protein synthesis. Thus, the present data suggest that the remaining mass of the undernourished mild cirrhotic patients has fairly good protein synthesis activity and also that protein, rather than energy intake, would be the limiting factor for increasing their whole-body protein synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesion is regarded as an important step in the pathogenesis of several microorganisms. Thus, the ability to recognize extracellular matrix proteins, such as laminin or fibronectin, has been correlated with invasiveness. Studying the already characterized laminin-binding protein of Paracoccidioides brasiliensis, the 43 kDa glycoprotein (gp43), we evaluated whether MAb 1.H12, raised against the laminin-binding protein from Staphylococcus aureus, cross-reacts with that fungal protein. By immunoblot analysis we show that MAb 1.H12 recognizes gp43. This interaction is able to inhibit the laminin-mediated adhesion to epithelial cells as well as the P. brasiliensis infection in vivo. Moreover, through immunoenzymatic assays, we show that MAb 1.H12 recognizes gp43 in solid phase and that this interaction is partially inhibited by the addition of anti-gp43 MAbs. These results show that MAb 1.H12 recognizes the gp43, suggesting the presence of an epitope similar to those found in the other laminin-binding proteins from phylogenetically very distant cells. These findings reinforce the possibility of evolutionary conservation of such epitopes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trivalent europium and terbium ions have ionic radii similar to that of Ca2+. So they are employed as probes of calcium binding sites in biological molecules. These ions exhibit very useful spectroscopic characteristics, chiefly a pronounced luminescence. In protein bound lanthanide, visible light emission from the lanthanide excited states can be observed when UV light is absorbed by aromatic amino acids. Subsequently, the energy is transferred to the lanthanide ion. The present work was carried out to define the binding sites of Eu3+ and Tb3+ in complexes with the aromatic amino acids L-phenylalanine and L-tryptophan. The techniques utilized were infrared and C nuclear magnetic resonance spectroscopies. It was found that trivalent europium and terbium interact with the carboxylate group of both amino acids. With L-tryptophan, the imino group of the indole ring is also involved representing another coordination site.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a flipflop phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The fungus Paracoccidioides spp is the agent of paracoccidioidomycosis (PCM), a pulmonary mycosis acquired by the inhalation of fungal propagules. Paracoccidioides malate synthase (PbMLS) is important in the infectious process of Paracoccidioides spp because the transcript is up-regulated during the transition from mycelium to yeast and in yeast cells during phagocytosis by murine macrophages. In addition, PbMLS acts as an adhesin in Paracoccidioides spp. The evidence for the multifunctionality of PbMLS indicates that it could interact with other proteins from the fungus and host. The objective of this study was to identify and analyze proteins that possibly bind to PbMLS (PbMLS-interacting proteins) because protein interactions are intrinsic to cell processes, and it might be possible to infer the function of a protein through the identification of its ligands. Results: The search for interactions was performed using an in vivo assay with a two-hybrid library constructed in S. cerevisiae; the transcripts were sequenced and identified. In addition, an in vitro assay using pull-down GST methodology with different protein extracts (yeast, mycelium, yeast-secreted proteins and macrophage) was performed, and the resulting interactions were identified by mass spectrometry (MS). Some of the protein interactions were confirmed by Far-Western blotting using specific antibodies, and the interaction of PbMLS with macrophages was validated by indirect immunofluorescence and confocal microscopy. In silico analysis using molecular modeling, dynamics and docking identified the amino acids that were involved in the interactions between PbMLS and PbMLS-interacting proteins. Finally, the interactions were visualized graphically using Osprey software. Conclusion: These observations indicate that PbMLS interacts with proteins that are in different functional categories, such as cellular transport, protein biosynthesis, modification and degradation of proteins and signal transduction. These data suggest that PbMLS could play different roles in the fungal cell. © 2013 de Oliveira et al.; licensee BioMed Central Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autism is a neurodevelopmental disorder characterized by impaired social interaction and communication accompanied with repetitive behavioral patterns and unusual stereotyped interests. Autism is considered a highly heterogeneous disorder with diverse putative causes and associated factors giving rise to variable ranges of symptomatology. Incidence seems to be increasing with time, while the underlying pathophysiological mechanisms remain virtually uncharacterized (or unknown). By systematic review of the literature and a systems biology approach, our aims were to examine the multifactorial nature of autism with its broad range of severity, to ascertain the predominant biological processes, cellular components, and molecular functions integral to the disorder, and finally, to elucidate the most central contributions (genetic and/or environmental) in silico. With this goal, we developed an integrative network model for gene-environment interactions (GENVI model) where calcium (Ca2+) was shown to be its most relevant node. Moreover, considering the present data from our systems biology approach together with the results from the differential gene expression analysis of cerebellar samples from autistic patients, we believe that RAC1, in particular, and the RHO family of GTPases, in general, could play a critical role in the neuropathological events associated with autism. © 2013 Springer Science+Business Media New York.