240 resultados para rain forest soil
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In order to estimate the deforestation consequences on the actual solar energy budget of the Central Amazon Region, two ecosystems of different characteristics were compared. The present conditions of the region were represented by a typical 'terra firme' forest cover located at INPA's Ducke Forest Reserve, where the measurements necessary to evaluate its solar energy balance were carried out. The second ecosystem, simulating a deforested area, was represented by an area about 1.0 ha without natural vegetation and situated in the same Reserve. In this area lysimeters were placed, two of them filled with yellow latosol and two others with quartzose sand soil. Both soils are representative soils in the region. Their water balances were taken into account as well as the other parameters necessary to compute the solar energy balances. The results showed that water loss by evaporation was about 41.8% of the total precipitation in the yellow latosol lysimeters and about 26.4% for the quartzose sand ones. For the forest cover it was estimated an evapotranspiration of 67.9% of the rainfall amount. In relation to solar energy balance calculated for the forest cover, it was found that 83.1% of the total energy incoming to this ecosystem was used by the evapotranspiration process, while the remaining of 16.9% can be taken as sensible heat. For bare soils, 55.1% and 31.8% of the total energy were used as latent heat by yellow latosol and quartzose sand soils, respectively. So, the remaining amounts of 44.9% and 68.2% were related to sensible heat and available to atmospheric air heating of these ecosystems. Such results suggest that a large deforestation of the Amazon Region would have direct consequences on their water and solar radiation balances, with an expected change on the actual climatic conditions of the region. © 1993.
Resumo:
Brazilian soils predominantly consist of iron and aluminum oxides and have a low phosphorus content. The present study was carried out in order to assess the status of phosphate fractions in pasture, forest and agricultural soils and the ability of soil fungi to solubilize iron and aluminum phosphates. The abundance of P fractions in the soils studied occurred in the following order: Fe-P > reductant-soluble Fe-P > occluded Fe-P > occluded Al-P > Al-P > Ca-P. of the 481 fungi isolated, 33 showed the ability to solubilize the inorganic phosphates in culture. of these, 14 were considered to be high or very high solubilizers based on a solubilization capacity > 1000 mu g PO43- ml(-1). Isolate F-111 was the only one that dissolved all the insoluble phosphates used. Nine isolates solubilized both Al-P and Ca-P, and four other isolates only solubilized Ca-P. The highest number of isolates with high solubilization capacity were detected in pasture soil, followed by tropical rain forest and forest patch soils. Pasture soil presented both the largest contents of insoluble phosphates and the largest number of fungal isolates with phosphate-solubilizing ability. The range and size of P fractions influenced the number of fungi and their ability to solubilize hardly soluble phosphates. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
Many studies have assessed the process of forest degradation in the Brazilian Amazon using remote sensing approaches to estimate the extent and impact by selective logging and forest fires on tropical rain forest. However, only a few have estimated the combined impacts of those anthropogenic activities. We conducted a detailed analysis of selective logging and forest fire impacts on natural forests in the southern Brazilian Amazon state of Mato Grosso, one of the key logging centers in the country. To achieve this goal a 13-year series of annual Landsat images (1992-2004) was used to test different remote sensing techniques for measuring the extent of selective logging and forest fires, and to estimate their impact and interaction with other land use types occurring in the study region. Forest canopy regeneration following these disturbances was also assessed. Field measurements and visual observations were conducted to validate remote sensing techniques. Our results indicated that the Modified Soil Adjusted Vegetation Index aerosol free (MSAVI(af)) is a reliable estimator of fractional coverage under both clear sky and under smoky conditions in this study region. During the period of analysis, selective logging was responsible for disturbing the largest proportion (31%) of natural forest in the study area, immediately followed by deforestation (29%). Altogether, forest disturbances by selective logging and forest fires affected approximately 40% of the study site area. Once disturbed by selective logging activities, forests became more susceptible to fire in the study site. However, our results showed that fires may also occur in undisturbed forests. This indicates that there are further factors that may increase forest fire susceptibility in the study area. Those factors need to be better understood. Although selective logging affected the largest amount of natural forest in the study period, 35% and 28% of the observed losses of forest canopy cover were due to forest fire and selective logging combined and to forest fire only, respectively. Moreover, forest areas degraded by selective logging and forest fire is an addition to outright deforestation estimates and has yet to be accounted for by land use and land cover change assessments in tropical regions. Assuming that this observed trend of land use and land cover conversion continues, we predict that there will be no undisturbed forests remaining by 2011 in this study site. Finally, we estimated that 70% of the total forest area disturbed by logging and fire had sufficiently recovered to become undetectable using satellite data in 2004. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Soil seed banks are considered an important mechanism for natural regeneration in tropical forest ecosystems. This paper investigated the soil seed bank in two semideciduous seasonal tropical forest fragments with different disturbance histories in Botucatu, southeastern Brazil. In each study site, 40 superficial soil samples (30 cm × 30 cm × 5 cm) were taken at the end of both the dry and rainy seasons. The seeds were estimated by the germination method. Average soil seed density was 588.6 and 800.3 seeds m-2, respectively, for site 1 (less disturbed) and site 2 (more disturbed). Seed density and diversity (H′) were significantly higher in site 2 in both seasons. Non-woody taxa predominated in both fragments, but pioneer tree species were better represented in the less disturbed forest. Both ecosystems have a potential for regeneration from soil seed banks, but this potential is higher in the less disturbed site. Low richness and density of pioneer tree species in the seed bank indicate that the ecosystem has lost its resilience. The seed bank is not as important in these ecosystems as in other forests. Results indicate that management strategies to restore these forests should take into account the possibility of recovering soil seed bank processes and dynamics. © 2007 Elsevier B.V. All rights reserved.
Resumo:
Brazil has the largest cattle herd in the world with approximately 200 million head. An important feature of the Brazilian cattle industry is that most of its herd is raised on pasture, which constitutes one of the most economical and practical ways to produce and provide food for cattle. However, this production model is mishandled and can lead to soil degradation. Maintaining soil quality is essential for the conservation of natural ecosystems and the areas of production, thus soil quality improves the conditions for biogeochemical cycles. In this context, the objective of this study was to develop a device for testing the Inderbitzen way of assessing soil erodibility in two situations of usage and occupation. Therefore, one area was used as a sample collection occupied by grazing and the other as a forest fragment; both located in the city of Sorocaba in Sao Paulo State, Brazil. Thus, we concluded that the proposed device - the Inderbitzen - proved capable of assessing soil erodibility of the pasture and remnant forest. Accordingly, there was a tendency for a smaller loss of forest soils in the remnant when compared to the degraded pasture. The greatest resistance of the soil erosion in the forest remnant may be associated with the amount of organic matter released by the forest litter in all its diversity, influencing the quality of the structure of aggregates. © 2013 WIT Press.
Resumo:
The effects of agricultural-pastoral and tillage practices on soil microbial populations and activities have not been systematically investigated. The effect of no-tillage (NT), no-tillage agricultural-pastoral integrated systems (NT-I) and conventional tillage (CT) at soil depths of 0-10, 10-20 and 20-30 cm on the microbial populations (bacteria and fungi), biomass-C, potential nitrification, urease and protease activities, total organic matter and total N contents were investigated. The crops used were soybean (in NT, NT-I and CT systems), corn (in NT and NT-I systems) and Tanner grass (Brachiaria sp.) (in NT-I system); a forest system was used as a control. Urease and protease activities, biomass-C and the content of organic matter and total N were higher (p < 0.05) in the forest soil than the other soils. Potential nitrification was significantly higher in the NT-I system in comparison with the other systems. Bacteria numbers were similar in all systems. Fungi counts were similar in the CT and forest, but both were higher than in NT. All of these variables were dependent on the organic matter content and decreased (p < 0.05) from the upper soil layer to the deeper soil layers. These results indicate that the no-tillage agricultural-pasture-integrated systems may be useful for soil conservation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A strategy to measure bacterial functional redundancy was developed and tested with soils collected along a soil reclamation gradient by determining the richness and diversity of bacterial groups capable of in situ growth on selected carbon substrates. Soil cores were collected from four sites along a transect from the Jamari tin mine site in the Jamari National Forest, Rondonia, RO, Brazil: denuded mine spoil, soil from below the canopy of invading pioneer trees, revegetated soil under new growth on the forest edge, and the forest floor of an adjacent preserved forest. Bacterial population responses were analyzed by amending these soil samples with individual carbon substrates in the presence of bromodeoxyuridine (BrdU), BrdU-labeled DNA was then subjected to a 16S-23S rRNA intergenic analysis to depict the actively growing bacteria from each site, the number and diversity of bacterial groups responding to four carbon substrates (L-serine, L-threonine, sodium citrate, and or-lactose hydrate) increased along the reclamation-vegetation gradient such that the preserved forest soil samples contained the highest functional redundancy for each substrate. These data suggest that bacterial functional redundancy increases in relation to the regrowth of plant communities and may therefore represent an important aspect of the restoration of soil biological functionality to reclaimed mine spoils. They also suggest that bacterial functional redundancy may be a useful indicator of soil quality and ecosystem functioning.
Resumo:
Pasture degradation is one of the greatest problems related to land use in the Amazon region, forcing farmers to open new forest areas. Many studies have identified the causes and the factors involved in this degradation process, in an attempt to reverse the situation. The purpose of this study was to examine the relationship between pasture degradation and some soil properties, to try to identify the most significant soil features in the degradation process. A cattle raising farm in the eastern Amazon region, with pastures of different ages and degrees of degradation, was used as the site for this study: a primary forest area, PN; three Guinea grass (Panicum maximum Jacq.) pastures in an increasingly degraded sequence-P1, P2 and P3; one Gamba grass (Andropogon gayanus Kunth) pasture following an extremely degraded Guinea grass pasture, P4. Aboveground phytomass data showed differences between the pastures, reflecting initially observed degradation levels. Grass biomass decreased sharply from P1 to P2 and disappeared at P3. Pasture recovery with Gamba grass at P4 was very successful, with grass biomass higher than P1 and weed biomass smaller than P2 and P3. Root biomass also decreased with pasture degradation. Soil bulk density increased with pasture decrease at the topsoil layer. Results from the soil chemical analysis showed that there were no signs of decrease in organic carbon and total nitrogen after the forest was transformed into pasture. In all pastures, degraded or not, the soil pH, the sum of bases and the saturation degree were higher than in the forest soil. The extractable phosphorus content, lower in forest soil, remained quite stable in pasture soils, but it could become a limiting factor for the maintenance of Guinea grass. Results indicated that pasture degradation does not seem to be directly related to the modification of the chemical features of soils. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study records the consequences of fire upon the soil and structure of the Amazonian Forest of Gaucha do Norte, Mato Grosso state, Brazil (13degrees12'S and 53degrees20'W). For this, the number of individuals sampled in 1 ha of the forest, during a phytosociological survey completed 2 days before the accidental fire, was compared with the survivors recorded afterwards in the reinventory of the area taken 2 days and 10 months after the fire. For the surveys, the area of 1 ha was subdivided into 50 plots of 10 m x 20 m, and all the individuals with circumference at breast height (CBH) greater than or equal to 15 cm were sampled. Chemical analysis of the 30 soil samples collected 2 days before the fire were compared with those obtained 15 days and 1 year after the fire. It was seen that, soon after the fire, there was a significant increase in the nutrient levels in the soil, an increase in the pH and a decrease in the aluminum toxicity. However, after 1 year, losses by lixiviation resulted in a nutrient reserve in the soil of less than that before the fire. The tree mortality was extremely high (23.98%), particularly amongst the younger individuals of the population (93.68% of the total of deaths in the period). There was no significant reduction in the forest richness analyzed: 60% of the species had reduced populations after the fire, but just four species were locally extinct. Results, however, demonstrated a role for fire in the selection of resistant species or those adapted to fires, since some species demonstrated a greater tolerance to the fire than others. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
This study was conducted in an area of restinga in the municipality of Silo Vicente (SP). The study aimed to evaluate the seed rain in three different conditions of regeneration. Was selected the following conditions: High Forest of Restinga in the middle stage of regeneration, an area of clearing in the same condition mentioned above and a third in early stages of regeneration. hi each condition were installed 10 seed collectors made of wood and screen with 80% of shade, supported to a height of 20cm of soil. They were evaluated monthly for one yew; the densities of seed deposited in the collector these seedlings are identified and categorized based on their dispersion syndrome and successional classes. The Area of High Forest area was carried out a phytosociological survey to identify which seedlings present in the rain could be from these areas. It was found that the densities of seedlings are relatively low compared to other formations of the Atlantic rain forest, but consistent with other studies of the same type of vegetation used in the study. Regarding dispersal syndromes and successional classes, there was prevalence of the zoocoric syndrome and species of secondary successional classes. The results indicate that the area has good ability to maintain their succession dynamics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)