119 resultados para quantum phase transition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of a repulsive three-body interaction on a system of trapped ultracold atoms in a Bose-Einstein condensed state. The stationary solutions of the corresponding s-wave nonlinear Schrödinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a different characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-squared radius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transition from the non-polar α-phase to the polar β-phase of poly(vinylidene fluoride) (PVDF) has been investigated using micro-Raman spectroscopy, which is advantageous for being a non-destructive technique. Films of α-PVDF were subjected to stretching under controlled rates and at 80°C, the transition to β-PVDF being monitored by the decrease in the Raman band at 794 cm-1 characteristic of the α-phase, with the concomitant increase in the 839 cm-1 band characteristic of the β-phase. Poling with negative corona discharge was found to affect the a-PVDF morphology improving the Raman bands related to this crystalline phase. This effect is minimized for films stretched to higher ratios. Significantly, corona-induced effects could not be observed with the other experimental techniques, viz. X-ray diffraction and infrared spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasma electrolytic oxidation (PEO) is a coating procedure that utilises anodic oxidation in aqueous electrolytes above the dielectric breakdown voltage to produce oxide coatings that have specific properties. These conditions facilitate oxide formation under localised high temperatures and pressures that originate from short-lived microdischarges at sites over the metal surface and have fast oxide volume expansion. Anodic ZrO2 films were prepared by subjecting metallic zirconium to PEO in acid solutions (H2C 2O4 and H3PO4) using a galvanostatic DC regime. The ZrO2 microstructure was investigated in films that were prepared at different charge densities. During the anodic breakdown, an important change in the amplitude of the voltage oscillations at a specific charge density was observed (i.e., the transition charge density (Q T)). We verified that this transition charge is a monotonic function of both the current density and temperature applied during the anodisation, which indicated that Q T is an intrinsic response of this system. The oxide morphology and microstructure were characterised using SEM and X-ray diffraction experiments (XRD) techniques. X-ray diffraction analysis revealed that the change in voltage oscillation was correlated with oxide microstructure changes during the breakdown process. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the phase transition from a dx2-y2 to a dx2-y2+dxy superconductor using the tight-binding model of two-dimensional cuprates. As the temperature is lowered past the critical temperature Tc, first a dx2-y2 superconducting phase is created. With further reduction of temperature, the dx2-y2+dxy phase is created at temperature T=Tc1. We study the temperature dependencies of the order parameter, specific heat, and spin susceptibility in these mixed-angular-momentum states on a square lattice and on a lattice with orthorhombic distortion. The above-mentioned phase transitions are identified by two jumps in specific heat at Tc and Tc1. ©1999 The American Physical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extended Weyl-Wigner transformation which maps operators onto periodic discrete quantum phase space representatives is discussed in which a mod N invariance is explicitly implemented. The relevance of this invariance for the mapped expression of products of operators is discussed. © 1992.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature dependencies of specific heat and spin susceptibility of a coupled dx2-y2 + idxy superconductor in the presence of a weak dxy component are investigated in the tight-binding model (1) on square lattice and (2) on a lattice with orthorhombic distortion. As the temperature is lowered past the critical temperature Tc, first a less ordered dx2-y2 superconductor is created, which changes to a more ordered dx2-y2 + idxy superconductor at Tcl(< Tc). This manifests in two second order phase transitions identified by two jumps in specific heat at Tc and Tc1. The temperature dependencies of the superconducting observables exhibit a change from power-law to exponential behavior as temperature is lowered below Tc1 and confirm the new phase transition. © 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the effect of mixing spontaneously formed dispersions of the cationic vesicle-forming dioctadecyldimethylammonium chloride and bromide (DODAX, with X being anions Cl- (C) or Br- (B)) with solutions of the micelle-forming nonionic ethylene oxide surfactants penta-, hepta-, and octaethyleneglycol mono-n-dodecyl ether, C12En (n = 5, 7, and 8), and the zwitterionic 3-(N-hexadecyl-N,N-dimethylammonio)propane sulfonate (HPS). We used for this purpose differential scanning calorimetry (DSC), turbidity, and steady-state fluorescence spectroscopy to investigate the vesicle-micelle (V-M) transition yielded by adding C12En and HPS to 1.0 mM vesicle dispersions of DODAC and DODAB. The addition of these surfactants lowers the gel-to-liquid crystalline phase transition temperature (T-m) of DODAC and DODAB, and the transition becomes less cooperative, that is, the thermogram transition peak shifts to lower temperature and broadens to disappear when the V-M transition is complete, the vesicle bilayer becomes less organized, and the T., decreases, in agreement with measurements of the fluorescence quantum yield of trans-diphenylpolyene (t-DPO) fluorescence molecules incorporated in the vesicle bilayer. Turbidity data indicate that the V-M transition comes about in three stages: first surfactants are solubilized into the vesicle bilayer; after saturation, the vesicles are ruptured, and, finally, the vesicles are completely solubilized and only mixed micelles are formed. The critical points of bilayer saturation and vesicle solubilization were obtained from the turbidity and fluorescence curves, and are reported in this communication. The solubility of DODAX is stronger for C12En than it is for HPS, meaning that C12En solubilizes DODAX more efficiently than does HPS. The surfactant solubilization depends slightly on the counterion, and varies according to the sequence C12E5 > C12E7 > C12E8 > HPS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the asymptotic properties of quantum states density for fundamental p-branes which can yield a microscopic interpretation of the thermodynamic quantities in M-theory. The matching of the BPS part of spectrum for superstring and supermembrane gives the possibility of getting membrane's results via string calculations. In the weak coupling limit of M-theory, the critical behavior coincides with the first-order phase transition in the standard string theory at temperature less than the Hagedorn's temperature T-H. The critical temperature at large coupling constant is computed by considering M-theory on manifold with topology R-9 circle times T-2. Alternatively we argue that any finite temperature can be introduced in the framework of membrane thermodynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inspired by analytic results obtained for a systematic expansion of the memory kernel in dissipative quantum mechanics, we propose a phenomenological procedure to incorporate non-markovian corrections to the Langevin dynamics of an order parameter in field theory systematically. In this note, we restrict our analysis to the onset of the evolution. As an example, we consider the process of phase conversion in the chiral transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the qualitative differences in the phase transitions of the mono-mode Dicke model in its integrable and chaotic versions. These qualitative differences are shown to be connected to the degree of entanglement of the ground state correlations as measured by the linear entropy. We show that a first order phase transition occurs in the integrable case whereas a second order in the chaotic one. This difference is also reflected in the classical limit: for the integrable case the stable fixed point in phase space undergoes a Hopf type whereas the second one a pitchfork type bifurcation. The calculation of the atomic Wigner functions of the ground state follows the same trends. Moreover, strong correlations are evidenced by its negative parts. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The understanding of biological membranes may be improved by investigating physical properties of vesicles from natural or synthetic amphiphiles. The application of vesicles as mimetic agents depends on the knowledgment of their structure and properties. Vesicles having different curvature and size may be obtained using different preparation protocols. We have used differential scanning calorimetry (DSC) and steady-state fluorescence to investigate the gel to liquid-crystal phase transition of vesicles prepared by sonication (SUV) and non-sonication (GUV) of the synthetic dioctadecyldimethylammonium bromide (DODAB) in aqueous solution. DSC thermograms for a non-sonicated dispersion show a well-defined pre- and main transition corresponding to two narrow peaks at 36 and 45°C in the first upscan, while in a second upscan, only the main peak was observed. The sharpness of the peaks indicate a cooperative phase behavior for GUV. For a sonicated DODAB dispersion, the first upscan shows a third peak at 40.3°C, whereas for the second upscan the peaks are not well-defined, indicating a less cooperative phase behavior. Alternatively, the fluorescence quantum yield (Φ f) and the anisotropy (r) of trans, trans, trans-1-[4-(3-carboxypropyl)-phenyl]-6-[4-butylphenyl]-1,3,5-hexatriene (4H4A) and the ratio I 1/I 3 of the first to the third vibronic peaks of the pyrene emission spectrum as function of temperature are used as well to describe the phase behavior of DODAB sonicated and non-sonicated dispersions. It is in good agreement with the DSC results that the cooperativity of the thermotropic process is diminished under sonication of the DODAB dispersion, meaning that sonication changes from homogeneous to heterogeneous populations of the amphiphile aggregates. The pre- and main transitions obtained from these techniques are in fairly good accord with results from the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.