37 resultados para quadrature
Resumo:
The signal-to-noise ratio and image uniformity analysis parameters are very important in quality control of an MRI scanner. They are measured in regular tests with phantoms. In these tests, however, used to quadrature coil, which has been most widely used clinically, and, therefore, was replaced in the procedures for body coil. In order to understand the difference between these two parameters in these coils, the study aimed to analyze the images acquired from four different phantoms in the same equipment under the same conditions for comparison purposes. With these results, it can be concluded that the body coil signal-to-noise ratio has always smaller than the quadrature in any projection, whereas the image uniformity is larger
Resumo:
Construction techniques with ruler and the compasses, fundamental on Euclidean geometry, have been related to modern algebraic theories such as solving equations and extension of bodies from the works by Paolo Ruffini (1765-1822), Niels Henrik Abel (1802-1829) and Evariste Galois (1811-1832). This relation could provide an answer to some famous problems, from ancient Greece, such as doubling the cube, the trisection Angle, the Quadrature of the Circle and the construction of regular polygons, which remained unsolved for over two thousand years. Also important for our purposes are the notions of algebraic numbers, transcendental and the criteria for constructability, of those numbers. The objective of this study is to reconstruct relevant steps of geometric constructions with ruler (unmarked) and the compasses, from the elementary to the outcome buildings, in the nineteenth century, considering those mentioned problems.
Resumo:
The aim of this paper is to present some fundamental aspects of the history of the number e, in particular those related to its origin, a little uncertain, and their unavoidable presence in the most diverse applications in various branches of science. We will highlight the importance of this number in compound interest problems, in the Napier’s logarithms, in the quadrature of the hyperbola, in the catenary problem and mostly in the lush Euler’s contribution to the subject.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Synthetic-heterodyne demodulation is a useful technique for dynamic displacement and velocity detection in interferometric sensors, as it can provide an output signal that is immune to interferometric drift. With the advent of cost-effective, high-speed real-time signal-processing systems and software, processing of the complex signals encountered in interferometry has become more feasible. In synthetic heterodyne, to obtain the actual dynamic displacement or vibration of the object under test requires knowledge of the interferometer visibility and also the argument of two Bessel functions. In this paper, a method is described for determining the former and setting the Bessel function argument to a set value, which ensures maximum sensitivity. Conventional synthetic-heterodyne demodulation requires the use of two in-phase local oscillators; however, the relative phase of these oscillators relative to the interferometric signal is unknown. It is shown that, by using two additional quadrature local oscillators, a demodulated signal can be obtained that is independent of this phase difference. The experimental interferometer is aMichelson configuration using a visible single-mode laser, whose current is sinusoidally modulated at a frequency of 20 kHz. The detected interferometer output is acquired using a 250 kHz analog-to-digital converter and processed in real time. The system is used to measure the displacement sensitivity frequency response and linearity of a piezoelectric mirror shifter over a range of 500 Hz to 10 kHz. The experimental results show good agreement with two data-obtained independent techniques: the signal coincidence and denominated n-commuted Pernick method.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)