159 resultados para preference mapping
Resumo:
The Richieri-Costa-Pereira syndrome is a rare autosomal recessive disorder characterized by short stature, Robin sequence, cleft mandible, pre/postaxial anomalies and clubfoot. of 15 families reported with this disorder 14 are from Brazil suggesting a founder effect. We studied 15 families using identity-by-descent as a hypothesis to attempt gene localization We have examined through linkage analysis 497 polymorphicmarkers and also performed direct sequencing of exons for 10 candidate genes selected on the basis of their expression in the developing mandible and limb. No evidence for allele sharing at any locus tested or mutations in candidate genes was found. Additional higher resolution mapping, new families and other candidate genes might improve future chances of gene identification. (C) 2003 Wiley-Liss, Inc.
Resumo:
Chromosomal localization of 5S rDNA and 5SHindIII repetitive sequences was carried out in several representatives of the Erythrinidae family, namely in karyomorphs A, D, and F of Hoplias malabaricus, and in H. lacerdae, Hoplerythrinusunitaeniatus and Erythrinus erythrinus. The 5S rDNA mapped interstitially in two chromosome pairs in karyomorph A and in one chromosome pair in karyomorphs D and F and in H. lacerdae. The 5SHindIII repetitive DNA mapped to the centromeric region of several chromosomes (18 to 22 chromosomes) with variations related to the different karyomorphs of H. malabaricus. on the other hand, no signal was detected in the chromosomes of H. lacerdae, H. unitaeniatus and E. erythrinus, suggesting that the 5SHindIII-DNA sequences have originated or were lost after the divergence of H. malabaricus from the other erythrinid species. The chromosome distribution of 5S rDNA and 5SHindIII-DNA sequences contributes to a better understanding of the mechanisms of karyotype differentiation among the Erythrinidae members.Copyright (c) 2007 S. Karger AG, Basel.
Resumo:
The Nile tilapia (Oreochromis niloticus) has received increasing scientific interest over the past few decades for two reasons: first, tilapia is an enormously important species in aquaculture worldwide, especially in regions where there is a chronic shortage of animal protein; and second, this teleost fish belongs to the fascinating group of cichlid fishes that have undergone a rapid and extensive radiation of much interest to evolutionary biologists. Currently, studies based on physical and genetic mapping of the Nile tilapia genome offer the best opportunities for applying genomics to such diverse questions and issues as phylogeography, isolation of quantitative trait loci involved in behaviour, morphology, and disease, and overall improvement of aquacultural stocks. In this review, we have integrated molecular cytogenetic data for the Nile tilapia describing the chromosomal location of the repetitive DNA sequences, satellite DNAs, telomeres, 45S and 5S rDNAs, and the short and long interspersed nucleotide elements [short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs)], and provide the beginnings of a physical genome map for this important teleost fish. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Basic and molecular cytogenetic analyses were performed in specimens of Characidium cf. zebra from five collection sites located throughout the Tietê, Paranapanema and Paraguay river basins. The diploid number in specimens from all samples was 2n = 50 with a karyotype composed of 32 metacentric and 18 submetacentric chromosomes in both males and females. Constitutive heterochromatin was present at the centromeric regions of all chromosomes and pair 23, had additional interstitial heterochromatic blocks on its long arms. The nucleolar organizer regions (NORs) were located on the long arms of pair 23, while the 5S rDNA sites were detected in different chromosomes among the studied samples. One specimen from the Alambari river was a natural triploid and had two extra chromosomes, resulting in 2n = 77. The remarkable karyotypic similarity among the specimens of C. cf. zebra suggests a close evolutionary relationship. on the other hand, the distinct patterns of 5S rDNA distribution may be the result of gene flow constraints during their evolutionary history.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Repetitive DNAs have been extensively applied as physical chromosome markers on comparative studies, identification of chromosome rearrangements and sex chromosomes, chromosome evolution analysis, and applied genetics. Here we report the characterization of repetitive DNA sequences from the Nile tilapia (Oreochromis niloticus) genome by construction and screening of plasmid library enriched with repetitive DNAs, analysis of a BAC-based physical map, and hybridization to chromosomes. The physical mapping of BACs enriched with repetitive sequences and C(o)t-1 DNA (DNA enriched for highly and moderately repetitive DNA sequences) to chromosomes using FISH showed a predominant distribution of repetitive elements in the centromeric and telomeric regions and along the entire length of the largest chromosome pair (X and Y sex chromosomes) of the species. The distribution of repetitive DNAs differed significantly between the p arm of X and Y chromosomes. These findings suggest that repetitive DNAs have had an important role in the differentiation of sex chromosomes. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)