146 resultados para power law model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results of our numerical study of the critical dynamics of percolation observables for the two-dimensional Ising model. We consider the (Monte Carlo) short-time evolution of the system with small initial magnetization and heat-bath dynamics. We find qualitatively different dynamic behaviors for the magnetization M and for Ω, the so-called strength of the percolating cluster, which is the order parameter of the percolation transition. More precisely, we obtain a (leading) exponential form for Ω as a function of the Monte Carlo time t, to be compared with the power-law increase encountered for M at short times. Our results suggest that, although the descriptions in terms of magnetic or percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some dynamical properties for a bouncing ball model are studied. We show that when dissipation is introduced the structure of the phase space is changed and attractors appear. Increasing the amount of dissipation, the edges of the basins of attraction of an attracting fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of attraction are destroyed given place to a transient described by a power law with exponent -2. The parameter-space is also studied and we show that it presents a rich structure with infinite self-similar structures of shrimp-shape. © 2013 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Processo FAPESP: 11/08171-3

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the critical short-time evolution of magnetic and droplet-percolation order parameters for the Ising model in two and three dimensions, through Monte Carlo simulations with the (local) heat-bath method. We find qualitatively different dynamic behaviors for the two types of order parameters. More precisely, we find that the percolation order parameter does not have a power-law behavior as encountered for the magnetization, but develops a scale (related to the relaxation time to equilibrium) in the Monte Carlo time. We argue that this difference is due to the difficulty in forming large clusters at the early stages of the evolution. Our results show that, although the descriptions in terms of magnetic and percolation order parameters may be equivalent in the equilibrium regime, greater care must be taken to interpret percolation observables at short times. In particular, this concerns the attempts to describe the dynamics of the deconfinement phase transition in QCD using cluster observables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we study the possible microscopic origin of heavy-tailed probability density distributions for the price variation of financial instruments. We extend the standard log-normal process to include another random component in the so-called stochastic volatility models. We study these models under an assumption, akin to the Born-Oppenheimer approximation, in which the volatility has already relaxed to its equilibrium distribution and acts as a background to the evolution of the price process. In this approximation, we show that all models of stochastic volatility should exhibit a scaling relation in the time lag of zero-drift modified log-returns. We verify that the Dow-Jones Industrial Average index indeed follows this scaling. We then focus on two popular stochastic volatility models, the Heston and Hull-White models. In particular, we show that in the Hull-White model the resulting probability distribution of log-returns in this approximation corresponds to the Tsallis (t-Student) distribution. The Tsallis parameters are given in terms of the microscopic stochastic volatility model. Finally, we show that the log-returns for 30 years Dow Jones index data is well fitted by a Tsallis distribution, obtaining the relevant parameters. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Within a QCD-based eikonal model with a dynamical infrared gluon mass scale we discuss how the small x behavior of the gluon distribution function at moderate Q(2) is directly related to the rise of total hadronic cross-sections. In this model the rise of total cross-sections is driven by gluon-gluon semihard scattering processes, where the behavior of the small x gluon distribtuion function exhibits the power law xg(x, Q(2)) = h(Q(2))x(-epsilon). Assuming that the Q(2) scale is proportional to the dynamical gluon mass one, we show that the values of h(Q(2)) obtained in this model are compatible with an earlier result based on a specific nonperturbative Pomeron model. We discuss the implications of this picture for the behavior of input valence-like gluon distributions at low resolution scales.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some dynamical properties for a problem concerning the acceleration of particles in a wave packet are studied. The model is described in terms of a two-dimensional nonlinear map obtained from a Hamiltonian which describes the motion of a relativistic standard map. The phase space is mixed in the sense that there are regular and chaotic regions coexisting. When dissipation is introduced, the property of area preservation is broken and attractors emerge. We have shown that a tiny increase of the dissipation causes a change in the phase space. A chaotic attractor as well as its basin of attraction are destroyed thereby leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with the stable manifold of a saddle fixed point. Once the chaotic attractor is destroyed, a chaotic transient described by a power law with exponent 1 is observed. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some dynamical properties present in a problem concerning the acceleration of particles in a wave packet are studied. The dynamics of the model is described in terms of a two-dimensional area preserving map. We show that the phase space is mixed in the sense that there are regular and chaotic regions coexisting. We use a connection with the standard map in order to find the position of the first invariant spanning curve which borders the chaotic sea. We find that the position of the first invariant spanning curve increases as a power of the control parameter with the exponent 2/3. The standard deviation of the kinetic energy of an ensemble of initial conditions obeys a power law as a function of time, and saturates after some crossover. Scaling formalism is used in order to characterise the chaotic region close to the transition from integrability to nonintegrability and a relationship between the power law exponents is derived. The formalism can be applied in many different systems with mixed phase space. Then, dissipation is introduced into the model and therefore the property of area preservation is broken, and consequently attractors are observed. We show that after a small change of the dissipation, the chaotic attractor as well as its basin of attraction are destroyed, thus leading the system to experience a boundary crisis. The transient after the crisis follows a power law with exponent -2. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Some dynamical properties of an ensemble of trajectories of individual (non-interacting) classical particles of mass m and charge q interacting with a time-dependent electric field and suffering the action of a constant magnetic field are studied. Depending on both the amplitude of oscillation of the electric field and the intensity of the magnetic field, the phase space of the model can either exhibit: (i) regular behavior or (ii) a mixed structure, with periodic islands of regular motion, chaotic seas characterized by positive Lyapunov exponents, and invariant Kolmogorov-Arnold-Moser curves preventing the particle to reach unbounded energy. We define an escape window in the chaotic sea and study the transport properties for chaotic orbits along the phase space by the use of scaling formalism. Our results show that the escape distribution and the survival probability obey homogeneous functions characterized by critical exponents and present universal behavior under appropriate scaling transformations. We show the survival probability decays exponentially for small iterations changing to a slower power law decay for large time, therefore, characterizing clearly the effects of stickiness of the islands and invariant tori. For the range of parameters used, our results show that the crossover from fast to slow decay obeys a power law and the behavior of survival orbits is scaling invariant. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772997]