57 resultados para oligosaccharides
Resumo:
The new flavonoid glycoside kaempferol-3-O-α-L-rhamnopyranosyl(1→2)-O-[α-L- rhamnopyranosyl(1→6)]-O-β-D-galactopyranoside-7-O-α-L- rhamnopyranoside was isolated together with (S)-zierin from the leaves of Zollernia ilicifolia (Fabaceae), a medicinal plant used as analgesic and antiulcerogenic effects in Brazilian Tropical Atlantic Rain Forest. The structures were established on the basis of 1H, 13C NMR and 2D NMR (COSY, HMBC, HMQC), UV, MS and IV spectra. The infusion of Zollernia ilicifolia was qualitatively compared to the infusion of the espinheiras-santas (Maytenus aquifolium and Maytenus ilicifolia) by HPLC-DAD.
Resumo:
A newly-isolated thermophilic strain of the zygomycete fungus Rhizomucor pusillus 13.36 produced highly active dextrinogenic and saccharogenic enzymes. Cassava pulp was a good alternative substrate for amylase production. Dextrinogenic and saccharogenic amylases exhibited optimum activities at a pH of 4.0-4.5 and 5.0 respectively and at a temperature of 75°C. The enzymes were highly thermostable, with no detectable loss of saccharogenic or dextrinogenic activity after 1 h and 6 h at 60°C, respectively. The saccharogenic activity was inhibited by Ca2+ while the dextrinogenic was indifferent to this ion. Both activities were inhibited by Fe2+ and Cu2+ Hydrolysis of soluble starch by the crude enzyme yielded 66% glucose, 19.5% maltose, 7.7% maltotriose and 6.6% oligosaccharides. Copyright © 2005, The Microbiological Society of Korea.
Resumo:
Among various physiological responses to salt stress, the synthesis of a lectin-related protein of 14.5 kDa was observed in rice plants (Oryza sativa L.) under the treatment of 170 mmol/L NaCl. In order to better understand the role of the SALT protein in the physiological processes involving salinity, it was immunolocalized in mesophilic cells of leaf sheath and blade of a rice variety IAC-4440 following monoclonal antibodies produced by hybridome culture technique. This variety turned out to be an excellent model for that purpose, since it accumulates SALT protein even in absence of salt treatment and it has been classified as moderately sensitive to salinity and a superior grain producer. This feature was relevant for this work since it allowed the use of plants without the deleterious effects caused by salinity. Immunocytochemistry assays revealed that the SALT protein is located in the stroma of chloroplasts under non-stressing condition. Since the chloroplast is the main target affected by salinity and considering that the SALT protein does not present any apparent signal peptide for organelle localization, its lectin-like activity seems to play an important role in the establishment of stable complexes, either to other proteins or to oligosaccharides that are translocated to the chloroplast. © 2011 China National Rice Research Institute.
Resumo:
The effects of exogenous enzymes supplementation on kibble diets for dogs formulated with soybean meal (SBM) as a substitute for poultry by-product meal (PM) was investigated on nutrient digestibility, fermentation products formation, post-prandial urea response and selected faecal bacteria counts. Two kibble diets with similar compositions were used in two trials: PM-based diet (28.9% of PM; soybean hulls as a fibre source) and SBM-based diet (29.9% of SBM). In experiment 1, the SBM diet was divided into three diets: SBM-0, without enzyme addition; SBM-1, covered after extrusion with 7500U protease/kg and 45U cellulase/kg; and SBM-2, covered with 15000U protease/kg and 90U cellulase/kg. In experiment 2, the SBM diet was divided into three diets: SBM-0; SBM-1, covered with 140U protease/kg; 8U cellulase/kg, 800U pectinase/kg, 60U phytase/kg, 40U betaglucanase/kg and 20U xylanase/kg; and SMB-2, covered with 700U protease/kg, 40U cellulase/kg, 4000U pectinase/kg, 300U phytase/kg, 200U betaglucanase/kg and 100U xylanase/kg. Each experiment followed a block design with six dogs per diet. Data were submitted to analysis of variance and means compared by orthogonal and polynomial contrasts (p<0.05). In both experiments, nutrients and energy digestibility did not differ between diets (p>0.05). SBM consumption resulted in increased faecal moisture and production (p<0.05), without effect on faecal score. Higher concentration of propionate, acetate and lactate, and lower ammonia and pH were found in the faeces of dogs fed SBM (p<0.05). Higher post-prandial urea was verified in dogs fed SBM (p<0.05). In experiment 2, the addition of enzymes increased faecal concentration of propionate, acetate and total short-chain fatty acid (p<0.05) and tended to reduce post-prandial urea concentration (p=0.06). Although with similar digestibility, SBM shows a worse utilization of absorbed amino acids than the PM. Soybean oligosaccharides can beneficially change gut fermentation product formation. Enzymes can increase the gut fermentation activity and improve the SBM proteic value. © 2013 Blackwell Verlag GmbH.
Resumo:
This study aimed to evaluate different inulin and probiotic levels as supplement in diets for piglets on nutrient digestibility and nitrogen balance. Twenty four crossbred barrows (Pietráin × Landrace × Large White), with initial average weight of 18.00 ± 0.38 kg, were individually housed in metabolic cages. The experimental design was a completely randomized block, in a 2 × 3 factorial scheme (probiotic levels: 0.30 and 0.60 %; inulin levels: 0.00, 0.25 and 0.50 %), with four replications. The probiotic used was a mix of Lactobacillus acidophillus, Streptococcus faecium and Bifidobacterium bifidum. The inulin was the prebiotic used in this study, characterized as an indigestible carbohydrate formed by fructooligosaccharides. Inulin levels provided a quadratic effect (p<0.05) on the digestibility coefficients of dry matter, organic matter and ether extract, and the better responses were obtained supplementing 0.194, 0.185 and 0.188 %. Quadratic effects were observed for the nitrogen excreted in feces, total nitrogen excretion, nitrogen efficiency use and nitrogen digestibility. The inulin levels of 0.194 and 0.216 %, in piglet diets, were the better for dry matter digestibility and total nitrogen excretion, respectively.
Resumo:
The production of xylooligosaccharides (XOS) using a packed-bed enzymatic reactor was studied at lab-scale. For this, a xylanase from Aspergillus versicolor was immobilized on different supports. The optimal derivative was xylanase immobilized on glyoxyl-agarose supports. This derivative preserved 85% of its catalytic activity; it was around 700-fold more stable than the soluble enzyme after incubation at 60. °C and was able to be reused for at least 10 1. h-cycles retaining full catalytic activity. About 18% of oligosaccharides with prebiotic interest (X2-X6) were produced by the glyoxyl derivative in batch hydrolysis. The production of xylobiose was 2.5-fold higher using the immobilized preparation than with soluble enzyme and small concentrations of xylose (<0.1%) were observed only at the end of the reaction. The derivative was employed on a packed bed reactor, and the continuous operation with no recirculation reached 56% and 70% of the end of reaction with flow rates of 60. mL/h and 12. mL/h, respectively. In continuous operation with recirculation at a flow rate of 60. mL/h, the reaction was completed after four hours. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Zootecnia - FMVZ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)