99 resultados para nutrient recycling
Resumo:
The use of post-consumer materials is directly related to reducing the cost of production and extraction of natural resources. Non-recyclable materials are randomly disposed in the environment. Brazil is one of the largest consumers of PET (polyethylene terephthalate) bottles. The purpose of this paper is to describe the opportunities and challenges of the logistics model for post-consumer PET bottle recycling in Brazil, while providing knowledge of its practices along the recycling chain. The results describe the need to educate those directly and indirectly involved in the process: to reduce consumption in order to reduce the amount of waste generated: to structure the post-consumer reverse chain and engage industrial sectors and government, through public policies, to support cleaner technologies along the PET bottle production chain. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Seasonal variations of C, N and P concentrations and stocks in the emergent macrophyte Echinochloa polystachya (H.B.K.) Hitchcock, of the Paranapanema River mouth zone at Jurumirim Reservoir (SP, Brazil), were examined. Marked variation in nutrient concentrations (from 287.6 to 463.2 mg C g DW-1; 3.4 to 37.8 mg N g DW-1; 0.13 to 2.31 mg P g DW-1) and stocks (from 3.8 to 11.9 t C ha(-1); 96.3 to 400.6 kg N ha(-1), 3.6 to 44.3 kg P ha(-1)) were observed along the year (August 1993 - July 1994). Peaks in concentrations and stocks were observed in January, February and March 1994. As nutrient concentrations in water and sediments are low and stocks in the plant high, the local nutrient dynamics seem to be controlled by this macrophyte. Leaf blades and sheaths participate most in recycling, while stems contain the principal nutrient stock.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cultivares de cafeeiro (Coffea Arabica L.) adaptadas às regiões de cultivo, com população de plantas otimizada e adequado estado nutricional são premissas para a obtenção de produções elevadas de café. Estudou-se a produção trienal de café e o teor foliar de macronutrientes de cultivares de cafeeiro em função das densidades de plantio. Foram utilizados os cultivares Catuaí Amarelo (IAC 47), Obatã (IAC 1669-20), Acaiá (IAC 474-19) e Icatu Amarelo (IAC 2944) nas populações de 2.500 plantas ha-1 com duas plantas por cova; e, 5.000, 7.519 e 10.000 plantas ha-1 com uma planta por cova. As plantas foram adubadas de modo homogêneo, porém, sem calagem. À medida que a população de cafeeiros aumentou, a produtividade trienal de café aumentou, a produção de frutos por planta diminuiu e os teores foliares de fósforo (P), potássio (K) e enxofre (S) aumentaram. Nos cafeeiros sob adensamento encontrou-se igual ou maior teor de macronutrientes do que naqueles sob espaçamento convencional, sendo que os maiores teores foram observados nas cultivares de porte alto, e os menores, na cultivar Obatã, de porte baixo. Nos cafeeiros das covas com uma planta observou-se maior produção de café e menores concentrações de P, Ca e S do que naqueles das covas com duas plantas. No geral, os cultivares e as populações de cafeeiros estavam com teores de N e S acima dos limites de referência citados na literatura, mas com teores dos demais macronutrientes dentro da faixa adequada.
Resumo:
This work investigated the effects of increasing temperature from 30 degrees C to 47 degrees C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30 degrees C, and then the temperature of the system was raised so it ranged from 35 degrees C in the last reactor to 43 degrees C in the first reactor or feeding reactor with a 2 degrees C difference between reactors. After 15 days at steady state, the temperature was raised from 37 degrees C to 45 degrees C for 25 days at steady state, then from 39 degrees C to 47 degrees C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/alpha, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40 degrees C, weak growth at 41 degrees C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40 degrees C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39-47 degrees C, but no isolates showing growth above 41 degrees C were obtained.
Resumo:
A sensor was fashioned to monitor the volume of nutrient in a solid substrate-based growth media by using electrochemical admittance spectroscopy. Several experimental parameters were investigated (i.e. The use of two- or three-electrode cells, the superficial area of the electrode, the amount of nutrient solution added to the growth media, and the influence of varying the dc and ac potential) to assess how these variables affect the admittance of the system. A linear correlation was observed between the maximum of the imaginary admittance and the volume of nutrient present. The response factor was 2.8 x 10(-5) S cm(-2) ml(-1) and the limit of detection (LOD) was 0.54 ml. The humidity of the growth media does not change the response of the nutrient toward the monitoring measurements. These results demonstrate that the volume of nutrient in this solid substrate-based growth media can be assessed using a ceramic sensor to measure the imaginary admittance. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The foundry sand agglomerated with alkaline phenolic resin, used for the manufacture of molds, was found to be a residue which is able to be recycled, minimizing the costs of disposal and the environmental impact. This paper analyzes the thermomechanical regeneration and leaching processes and also assesses the influence of additives on the improvement of the mechanical properties of the sands. Besides, the industrial experiments carried out at CSN aiming at the foundry sand recycling in the covering of the blast furnace troughs are presented. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The urban solid waste of the city of Indaiatuba (pop. 175 000), located in the state of São Paulo, was characterized, focusing on the recycling potential. For this purpose, collected waste was subdivided into 27 items, classified by mass and volume. About 90% of this waste was found to be potentially recyclable and only 10% requiring landfilling. The compostable organic matter, in the form of food and garden waste, both with high moisture content (51 and 41%, respectively), represents 54% in mass and 21% in volume. The most common type of plastic in this waste is high density polyethylene, whose estimated disposal is about 5000 kg day(-1). A socio-economic analysis of the waste generation indicates that low-income neighbourhoods discard relatively less packaging and more food waste, shoes and construction debris than middle and high income ones, which may be due to low purchasing power and schooling. Our findings indicate that more aluminium and uncoloured polyethylene terephthalate is discarded in the warmest months of the year, probably due to a greater consumption of canned and bottled drinks.
Resumo:
A good cover crop should have a vigorous early development and a high potential for nutrient uptake that can be made available to the next crop. In tropical areas with relatively dry winters drought tolerance is also very important. An experiment was conducted to evaluate the early development and nutrition of six species used as cover crops as affected by sub-superficial compaction of the soil. The plants (oats, pigeon pea, pearl millet, black mucuna, grain sorghum, and blue lupin) were grown in pots filled with soil subjected to different subsurface compaction levels (bulk densities of 1.12, 1.16, and 1.60 mg m(-3)) for 39 days. The pots had an internal diameter of 10 cm and were 33.5 cm deep. Grasses were more sensitive to soil compaction than leguminous plants during the initial development. Irrespective of compaction rates, pearl millet and grain sorghum were more efficient in recycling nutrients. These two species proved to be more appropriate as cover crops in tropical regions with dry winters, especially if planted shortly before spring.
Resumo:
The effect of magnesium levels in nutrient solution upon relation between shoot and root, leaf weight ratio and assimilate partitioning of common bean (Phaseolus vulgaris L. cv Carioca) was studied. Bean plants (3 per pot) were grown in 6 l pots containing Hoagland & Arnon n. 2 solution modified to obtain 2.4, 24.3, 48.6, 72.9 and 97.2 ppm of magnesium. The experimental design was a completely randomized factorial replicated 3 times with 5 levels of magnesium and 5 samplings wich were done forthnightly. Therefore, it may be suggested that the 48.6 ppm of magnesium level proposed by Hoagland & Amen (1950) is the best choice for the common bean, according to the conditions of this experiment. Magnesium concentrations over 48.6 ppm didn't show significant alterations of the evaluated parameters. Nutrient solution with 2.4 ppm of magnesium content provides higher efficiency to the common bean plants during almost all its cycle, except the final of the reproductive phase. These results suggest that magnesium concentration increased to 48.6 ppm, in the cycle final perhaps could increase the productivity.