72 resultados para nanocrystalline


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline FeCuNbSiB alloys obtained from the partial crystallization of amorphous alloys have attracted technological attention due to their excellent magnetic properties, but the relationship between corrosion resistance and magnetic properties is not well established. The influence of Nb as an alloying element and effect of partial crystallization on the corrosion resistance of Fe73.5Si13.5B10Cu1, Fe73.5Si13.5B7Nb3Cu1 and Fe73.5Si13.5B5Nb5Cu1 amorphous alloys were studied and the effect of corrosion on magnetization saturation flux density, B-s, was investigated. The addition of niobium on amorphous alloys increases the corrosion resistance. The raise of Nb content from 3 to 5% increases the corrosion resistance also. A partial crystallization increases the corrosion resistance of the samples with Nb. However, in the samples without Nb, the partial crystallization diminishes the corrosion resistance. The values of B-s depend on the alloy corrosion resistance.) (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline Al(2)O(3)powders have been synthesized by the polymeric precursor method. A study of the evolution of crystalline phases of obtained powders was accomplished through X-ray diffraction, micro-Raman spectroscopy and refinement of the structures through the Rietveld method. The results obtained allow the identification of three steps on the gamma-Al2O3 to alpha-Al2O3 phase transition. The single-phase alpha-Al2O3 Powder was obtained after heat-treatment at 1050 degrees C for 2 h. A study of the morphology of the particles was accomplished through measures of crystallite size, specific surface area and transmission electronic microscopy. The particle size is closely related to gamma-Al2O3 to alpha-Al2O3 phase transition. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nut, calculated using Rietveld refinement, is in a good agreement with results of HRTEM. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconia-based ceramics that retain their metastable tetragonal phase at room temperature are widely studied due to their excellent mechanical and electrical properties. When these materials are prepared from precursor nanopowders with high specific surface areas, this phase is retained in dense ceramic bodies. In this work, we present a morphological study of nanocrystalline ZrO2-2.8 mol% Y2O3 powders synthesized by the gel-combustion method, using different organic fuels - alanine, glycine, lysine and citric acid - and calcined at temperatures ranging from 873 to 1173 K. The nanopore structures were investigated by small-angle X-ray scattering. The experimental results indicate that nanopores in samples prepared with alanine, glycine and lysine have an essentially single-mode volume distribution for calcination temperatures up to 1073 K, while those calcined at 1173 K exhibit a more complex and wider volume distribution. The volume-weighted average of the nanopore radii monotonically increases with increasing calcination temperature. The samples prepared with citric acid exhibit a size distribution much wider than the others. The Brunauer-Emmett-Teller technique was used to determine specific surface area and X-ray diffraction, environmental scanning electron microscopy and transmission electron microscopy were also employed for a complete characterization of the samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO: Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm(-2)), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocrystalline ZrO2-12 mol % CeO2 powders were synthesized using a polymeric precursor method based on the Pechini process. X-ray diffraction (XRD) patterns showed that the method was effective to synthesize tetragonal zirconia single-phase. The mean crystallite size attained ranges from 6 to 15 nm. The BET surface areas were relatively high reaching 97 m(2)/g. Studies by nitrogen adsorption/desorption on powders, dilatometry of the compacts, and transmission electron microscopy (TEM) of the powders, were also developed to verify the particles agglomeration state. Both citric acid : ethylene glycol ratio and calcination temperature affected the powder morphology, which influenced the sinterability and microstructure of the sintered material, as showed by scanning electron microscopy (SEM). (C) 2001 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two ways of application of intensive milling in ZnO varistors processing were compared. First was intensive milling of mixture of previously prepared constituent phases. In this case, intensive milling was applied only to obtain highly activated nanocrystalline varistor powder mixtures. Second application is intensive milling of simple mixture of oxides that could result not only in activation and formation of nanocrystal line powders, but also in mechanochernical reaction and synthesis of constituent phases. Powders and ceramics samples were characterized by XRD and SEM analysis. as well as by de electrical measurements (nonlinearity coefficients, leakage current and breakdown field). Differences in microstructural and electrical properties of obtained varistors were discussed and optimal milling and processing conditions were recommended. The best electrical characteristics were found in sample ZI -DMCP-m, which exhibited leakage current of 2.5 mu A/cm(2), nonlinear coefficient reaching 58 and breakdown field of 8950 V/cm. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mechanochemical synthesis was applied to obtain nanocrystalline powders of composition Pb(Zr0.52Ti0.48)O-3 (PZT). Milling was performed in a planetary ball mill using vials and balls made of zirconia or steel-in order to investigate influence of milling media on the electrical properties of resulting ceramics. PZT ceramics showed high values for dielectric constant (epsilon(r)), reaching 970 at room temperature, as well as low dielectric loss (tandelta) under the optimal processing conditions. High values of remanent polarization (P-r) indicate high internal polarizability. The best samples showed piezoelectric strain constant d(33) = 347 pC/N and planar coupling factor k(P) = 0.44. Milling in ZrO2 medium prevents powder contamination and provides reproducibility of milling process. Also, PZT obtained from the powders milled in ZrO2 exhibited lower values of dielectric loss, in comparison with the PTZ obtained from the powders milled in Fe. This suggests that contamination of the powder with Fe could result in an increase of conductivity in final product. (C) 2004 Kluwer Academic Publishers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The laser ablation method was used for depositing porous nanocrystalline indium-tin oxide thin films for gas sensing applications. Samples were prepared at different pressures using three gases (O-2, 0.8N(2):0.2O(2), N-2) and heat-treated in the same atmosphere used for the ablation process. X-ray diffraction results show that the films are not oriented and the grain sizes are in the range between 15 and 40 nm. The grains are round shaped for all samples and the porosity of the films increases with the deposition pressure. The degree of sintering after heat treatment increases for lower oxygen concentrations, generating fractures on the surface of the samples. Film thicknesses are in the range of I pm for all gases as determined from scanning electron microscopy cross-sections. Electrical resistance varies between 36.3 ohm for the film made at 10 Pa pressure in N-2 until 9.35 x 10(7) ohm for the film made at 100 Pa in O-2. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PZT ceramic powders were successfully prepared from the mixture of PbO, ZrO2 and TiO2 by mechanochemical synthesis in a planetary ball mill, under different milling conditions. Phase evolution during synthesis was monitored by X-ray diffraction analysis. Intensive milling resulted in formation of the nanocrystalline, perovskite PZT powders after 1 h of milling. This is a significant improvement in comparison to milling conditions reported by other authors. Depending on milling parameters the presence of some other phases, such as unreacted ZrO2, was also detected in some samples. The changes in powder size and morphology due to intensive milling, were determined by SEM and TEM, while BET analysis was used to determine specific surface area of the powders. Conclusions about processes taking place during mechanochemical synthesis of PZT powders were made based on the results of characterization. (C) 2002 Elsevier B.V. B.V. All rights reserved.