127 resultados para microbial activity
Resumo:
Microbial activity constitutes a good indicator of soil quality, and is influenced by the addition of carbon in the system serving as a substrate for microorganisms that increase their activity and release of CO2, comprising the edaphic respiration of the soil. The objective of this study was to evaluate the microbial activity in different soil types with the addition of cake press of castor bean and cotton textile residue. The study was conducted in a greenhouse at the headquarters of Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Cotton in randomized block design in 4 x 3 factorial arrangement with four replications. At predetermined intervals of 4 days, the containers were opened and the solution of NaOH titrated with HCl 2N in the presence of acid/base indicator phenolphthalein. After reading, the same amount of NaOH was added and the containers were closed again. The difference between the amounts of acid needed to neutralize the sodium hydroxide in a control container and the treatments was equivalent to the amount of carbon dioxide produced by soil microorganisms. It was found that the residues influenced the microbial activity in different soil types, especially in the initial determinations, presenting themselves as good sources for mineralization and nutrient supply, the castor bean proportionating higher cumulative release of CO2 by microorganisms.
Resumo:
The recuperation of areas used during the construction of the hydroelectric plant, especially in 'borrowed areas', is a difficult and long process since all vegetation and the fertile layer of soil were removed. Interventions in these degraded areas could accelerate the revegetation process. The objective of this research was to evaluate the association of arbuscular mycorrhizal fungi (AMF) in tree species, microbial activity (basal respiration) and fertility of 'cerrado' degraded areas. Soil from two areas, pasture soil and exposed subsoil, were utilized. Organic and mineral fertilization, and liming, were added to the pit for better seedlings' initial growth, where 50 mL of preserved cerrado soil was applied as inoculum of microorganisms. Seedlings of 11 tree species were planted: Anadenanthera falcata (Benth.) Speg ('angico-preto'), Acacia polyphylla D. C. ('monjoleiro'), Stryphnodendron adstringens (Mart.) Coville ('barbatimao'), Dimorphandra mollis Benth ('faveiro'), Hymenaea stigonocarpa Mart. ex Hayne ('jatoba-de-cerrado'), Dipteryx alata Vog. ('baru'), Machaerium acutifolium Vogel ('jacaranda-do-campo'), Schinus terebinthifolia Raddi ('aroeirapimenteira'), Magonia pubescens St. Hil. ('tingui'), Lafoensia pacari St. Hil. ('dedaleira') and Tabebuia aurea (Manso) Benth. & Hook ('ipe-amarelo'). Twelve months later, root samples were colleted at the depth of 0-0.10 m and used for evaluations. The subsoil, as compared to pasture soil, was poor in organic matter and presented less microbial activity. The highest mycorrhizal colonization was seen in the species Acacia polyphylla D. C. (monjoleiro), Magonia pubescens St. Hil. (tingui), Hymenaea stigonocarpa Mart. ex Hayne (jatoba-de-cerrado) and Schinus terebinthifolia Raddi (aroeira-pimenteira). These species could be indicated in revegetation projects in 'cerrado' degraded areas. Plants from both areas showed seedlings form high mycorrhizal colonization and low numbers of spores.
Resumo:
Bornite electrodes were characterized in the absence or in the presence of Acidithiobacillus ferrooxidans, which is an important microorganism involved in metal bioleaching processes. The presence of the bacterium modified the mineral/electrolyte interface, increasing the corrosion rate, as revealed by interferometric, AEM, ICP and EIS analyses. As a consequence of bacterial activity the electrode became porous, increasing its surface heterogeneity. This behavior was correlated with the evolution of impedance diagrams obtained during the time course of experiments. The main difference in these diagrams was the presence of an inductive feature (up to 44 h), which was related to bacterial action on the mineral dissolution, better than to its adhesion on the bornite. The total real impedance measured in presence of the bacterium was about 10 times lower than in its absence, due to the acceleration of the mineral dissolution, because an oxidant environment was maintained.
Resumo:
The microorganism Sclerotinia was isolated from roots of Stevia rebaudiana (Bert.) Bertoni in plantations in the northwest of Parana and submitted to the cultivation in the presence of extracts and vegetable balsams of Tarragon (Artemisia draconculus), Thyme (Thymus vulgaris), Manjerona (Origanum majorona), Mint citrata (Mintpiperita var. citrata), Purple Basil (Ocimum basilicum L.), Andiroba (Carapa guanensis) and Copaíba (Copaifera reticulata Ducke). The first five oils were extracted by steam drags, after the drying of the vegetable in greenhouse with circulation of air at 45°C. The last two were used in natura. A suspension (100ìl) of fungus previously cultivated, was added to each plate. The results show that after 7 days of incubation the thyme oils 10ìl, purple basil 25ìl, manjerona 25ìl, mint citrata 50ìl, tarragon 50ìl were capable to inhibit the growth of Sclerotinia, while the andiroba oil only reached this result with 200ìl. The copaiba balsam, even in the concentration of 500ìl, was unable to inhibit the growth of the microorganism.
Resumo:
In order for the projects of recovery of degraded areas to be successful, it is necessary to have a perfect recovery of the soil where the revegetation will be implanted as an initial action in the recovery of the whole process. The use of native forest species fully adapted to these types of terrain is another aspect of great importance, once the non-selection of these species, even if abundant in the surrounding areas, as it is in our case, implies great mortality of individuals during the planting and their low fixation during the process. The establishment of a monitoring program that contemplates the advancements obtained in the soil, the vegetation and the return of wild animals also collaborate in the evaluation of the success of the process. And, finally, the effective participation of the mining company, accepting and applying the techniques tested and indicated by research, even if, initially, the return time is longer than expected, also guarantees the success of the process. The mining company not only implemented a partnership with important universities in Brazil to obtain solutions for the environmental problems but also applied the developed techniques and the monitoring program. In the present work, we have attempted to summarize important aspects to evaluate the advancements in the rehabilitation plan for those areas, being here presented some results of the monitoring of areas under different levels of recovery, in accordance with the techniques adopted. Biological parameters of the soil were used to verify the efficiency of these different techniques in the recovery process. This work is part of the monitoring program of areas in rehabilitation by the mining company, implemented as of 1999 and in partnership with universities. The microbial activity was determined through the quantification of the carbon and nitrogen microbial biomass (BMC and BMN) and the activity of the dehydrogenase evaluated in the mining floor and tailing areas in different levels of soil preparation and planting of native species. The analysis of the parameters studied revealed that the preparation of the soil, following the three years proposed by the methodology, was important for the success in establishing the rehabilitation process. Some of the areas analyzed already show some parameters with values close or superior to those found in the capoeira (secondary forest), the latter being the non-treated area. © 2010 WIT Press.
Resumo:
According to the environmental legislation enforced in Brazil and the process of marketing globalization, the commitment of the nations to the preservation of the environment is intensified. By reason of nature's negative responses to its intensive use, awareness then appears from enterprises and agencies about how the anthropic action over the environment needs to be minimized, becoming a challenge: development and sustainability. In this context, the present work made use of the Mechanical tillage of the soil, as a technique to apply, in a large scale, the strategies and methods to recover mined areas that were researched and developed experimentally by researchers on a theme project about the recovering of degraded areas. This work was conducted in the Amazon ecosystem, inside the Jamari National Forest - Rondônia (FLONA do Jamari), in deactivated cassiterite mines. The objectives of this work were to: Develop a computational program capable of managing a database and assist in the selection of machines and preparation methods to execute the operations of topographical reconstitution and tillage of surfaces in areas degraded by the mineral exploitation of cassiterite. Use the program that was developed in the planning of costs and operational development, for the operations required in the strategies for recovering the areas. Analyze the vegetable productivity in the mobilized areas and the quality of the superficial mobilization, making use of indicators and tillage methods. Evaluate, through biological indicators, the efficiency of the recovery strategies and techniques that were mechanized and applied on the location. The results showed that the developed computational program (SGMAD) served the methodological purposes (the analysis of costs and operational capacity) established for the planning and the selection of the tillage machines and methods in the areas of mineral exploitation of cassiterite. The applied methods and quality of the superficial mobilization were significant to the development of leguminous plants in the areas. The use of biological indicators (microbial biomass and enzymatic activity) in the evaluation of the adopted techniques and strategies revealed that the planting of leguminous plants and their posterior incorporation have been promoting gradually positive alterations in some of the analyzed soil/substract parameters. © 2010 WIT Press.
Resumo:
The microbiological quality of bottled mineral water of various domestic brands sold in Brazil was investigated, with particular focus on the heterotrophic plate count (HPC). Neither total coliforms nor Escherichia coli were found in any 1.5 L bottle samples. Total coliforms were found in 2.9% of the small bottles, while in 20 L bottles the presence of total coliforms and E. coli was demonstrated in 15.5 and 2.4% of samples, respectively. Pseudomonas aeruginosa was detected in 4.3, 4.5 and 9.5% of small, 1.5 and 20 L bottles, respectively. In 36.4% of the samples of 1.5 L bottles, the HPC was above 500 cfu/mL. This percentage of samples with an HPC above 500 cfu/mL increased to 52.0 and 61.9% in small and 20 L bottles, respectively. Higher contamination by total coliforms, E. coli, P. aeruginosa and HPCs occurred in 20 L bottles. In conclusion, several samples in this study were outside the international quality standard for mineral water and the large number of samples with high HPCs shows that more work must be done on the use of HPC in mineral water and the damaging effects that these microorganisms may cause to humans. The bottled mineral water was confirmed as a particularly important public health problem, due to the poor microbiological quality of the products that are marketed. © IWA Publishing 2012.
Resumo:
The BTEX (benzene, toluene, ethylbenzene and xylene) mixture is an environmental pollutant that has a high potential to contaminate water resources, especially groundwater. The bioremediation process by microorganisms has often been used as a tool for removing BTEX from contaminated sites. The application of biological assays is useful in evaluating the efficiency of bioremediation processes, besides identifying the toxicity of the original contaminants. It also allows identifying the effects of possible metabolites formed during the biodegradation process on test organisms. In this study, we evaluated the genotoxic and mutagenic potential of five different BTEX concentrations in rat hepatoma tissue culture (HTC) cells, using comet and micronucleus assays, before and after biodegradation. A mutagenic effect was observed for the highest concentration tested and for its respective non-biodegraded concentration. Genotoxicity was significant for all non-biodegraded concentrations and not significant for the biodegraded ones. According to our results, we can state that BTEX is mutagenic at concentrations close to its water solubility, and genotoxic even at lower concentrations, differing from some described results reported for the mixture components, when tested individually. Our results suggest a synergistic effect for the mixture and that the biodegradation process is a safe and efficient methodology to be applied at BTEX-contaminated sites. © 2012 Elsevier Ltd.
Resumo:
The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes. © 2012 Springer Science+Business Media B.V.
Resumo:
Polar Regions are the most important soil carbon reservoirs on Earth. Monitoring soil carbon storage in a changing global climate context may indicate possible effects of climate change on terrestrial environments. In this regard, we need to understand the dynamics of soil organic matter in relation to its chemical characteristics. We evaluated the influence of chemical characteristics of humic substances on the process of soil organic matter mineralization in selected Maritime Antarctic soils. A laboratory assay was carried out with soils from five locations from King George Island. We determined the contents of total organic carbon, oxidizable carbon fractions of soil organic matter, and humic substances. Two in situ field experiments were carried out during two summers, in order to evaluate the CO2-C emissions in relation to soil temperature variations. The overall low amounts of soil organic matter in Maritime Antarctic soils have a low humification degree and reduced microbial activity. CO2-C emissions showed significant exponential relationship with temperature, suggesting a sharp increase in CO2-C emissions with a warming scenario, and Q10 values (the percentage increase in emission for a 10°C increase in soil temperature) were higher than values reported from elsewhere. The sensitivity of the CO2-C emission in relation to temperature was significantly correlated with the humification degree of soil organic matter and microbial activity for Antarctic soils. © 2012 Antarctic Science Ltd.
Resumo:
This work describes the efficiency of photoelectrocatalysis based on Ti/TiO2 nanotubes in the degradation of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 and to remove their toxic properties, as an alternative method for the treatment of effluents and water. For this purpose, the discoloration rate, total organic carbon (TOC) removal, and genotoxic, cytotoxic and mutagenic responses were determined, using the comet, micronucleus and cytotoxicity assays in HepG2 cells and the Salmonella mutagenicity assay. In a previous study it was found that the surfactant Emulsogen could contribute to the low mineralization of the dyes (60% after 4h of treatment), which, in turn, seems to account for the mutagenicity of the products generated. Thus this surfactant was not added to the chloride medium in order to avoid this interference. The photoelectrocatalytic method presented rapid discoloration and the TOC reduction was ≥87% after 240min of treatment, showing that photoelectrocatalysis is able to mineralize the dyes tested. The method was also efficient in removing the mutagenic activity and cytotoxic effects of these three dyes. Thus it was concluded that photoelectrocatalysis was a promising method for the treatment of aqueous samples. © 2013 Elsevier Ltd.
Resumo:
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.
Photodynamic potential of curcumin and blue LED against streptococcus mutans in a planktonic culture
Resumo:
Background: The photodynamic therapy (PDT) involves the use of light of specific wavelength to activate a nontoxic photosensitizing agent or dye in the presence of oxygen for eradication of target cells. In dentistry, this therapy is used to suppress the growth of microorganisms involved directly with dental decay and periodontitis process. There are evidences that curcumin dye is able to control microbial activity when illuminated with specific wavelength. The purpose of this study was to evaluate the in vitro efficacy of PDT using curcumin dye (Cur-C) in combination with a blue LED (L) device on a planktonic model of Streptococcus mutans ( S. mutans). Methods: Suspensions (0.5mL) containing S. mutans at 1×107CFUmL-1 were prepared and divided into 4 groups: Group C-L- (control: no treatment and 1 experimental condition), Group C+L- (curcumin at 3 different concentrations: 2000; 4000 and 8000μM and 3 experimental conditions), Group C-L+ (LED at 3 different dosages: 24, 48 and 72Jcm-2 and 3 experimental conditions), and Group C+L+ (PDT group: curcumin at respective concentrations combined to LED dosages and 9 experimental conditions). Samples of each experimental condition were cultured in Petri dishes of BHI agar. Incubation in micro-aerophilia at 37°C for 48h was performed for subsequent visual counting of CFU/mL. Data were transformed into log10 and analyzed by two-way ANOVA and Tukey's test at p<0.05. Results: Group C. +. L+, in specific experimental conditions, demonstrated a log bacterial reduction 70% higher than Group C. -. L-. Both groups C. -. L+ and C. +. L- presented a slight decrease in log bacterial counting. Conclusion: This in vitro method was able to reduce the number of S. mutans in a planktonic suspension. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)