47 resultados para methyl CpG binding protein 2
Resumo:
Background: Cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN) has been used successfully to induce immune responses against viral and intracellular organisms in mammals. The main objective of this study was to test the effect of CpG-ODN on antigen presenting cells of young foals. Methods: Peripheral blood monocytes of foals (n = 7) were isolated in the first day of life and monthly thereafter up to 3 months of life. Adult horse (n = 7) monocytes were isolated and tested once for comparison. Isolated monocytes were stimulated with IL-4 and GM-CSF (to obtain dendritic cells, DC) or not stimulated (to obtain macrophages). Macrophages and DCs were stimulated for 14-16 hours with either CpG-ODN, LPS or not stimulated. The stimulated and non-stimulated cells were tested for cell surface markers (CD86 and MHC class II) using flow cytometry, mRNA expression of cytokines (IL-12, IFNα, IL-10) and TLR-9 using real time quantitative RT-PCR, and for the activation of the transcription factor NF-κB p65 using a chemiluminescence assay. Results: The median fluorescence of the MHC class II molecule in non-stimulated foal macrophages and DCs at birth were 12.5 times and 11.2 times inferior, respectively, than adult horse cells (p = 0.009). That difference subsided at 3 months of life (p = 0.3). The expression of the CD86 co-stimulatory molecule was comparable in adult horse and foal macrophages and DCs, independent of treatment. CpG-ODN stimulation induced IL-12p40 (53 times) and IFNα (23 times) mRNA expression in CpG-ODN-treated adult horse DCs (p = 0.078), but not macrophages, in comparison to non-stimulated cells. In contrast, foal APCs did not respond to CpG-ODN stimulation with increased cytokine mRNA expression up to 3 months of age. TLR-9 mRNA expression and NF-kB activation (NF-kB p65) in foal DCs and macrophages were comparable (p > 0.05) to adult horse cells. Conclusion: CpG-ODN treatment did not induce specific maturation and cytokine expression in foal macrophages and DCs. Nevertheless, adult horse DCs, but not macrophages, increased their expression of IL-12 and IFNα cytokines upon CpG-ODN stimulation. Importantly, foals presented an age-dependent limitation in the expression of MHC class II in macrophages and DCs, independent of treatment. © 2007 Flaminio et al; licensee BioMed Central Ltd.
Resumo:
Deletion of the Saccharomyces cerevisiae gene YOL008W, here referred to as COQ10, elicits a respiratory defect as a result of the inability of the mutant to oxidize NADH and succinate. Both activities are restored by exogenous coenzyme Q(2). Respiration is also partially rescued by COQ2, COQ7, or COQ8/ABC1, when these genes are present in high copy. Unlike other coq mutants, all of which lack Q(6), the coq10 mutant has near normal amounts of Q(6) in mitochondria. Coq10p is widely distributed in bacteria and eukaryotes and is homologous to proteins of the aromatic-rich protein family Pfam03654 and to members of the START domain superfamily that have a hydrophobic tunnel implicated in binding lipophilic molecules such as cholesterol and polyketides. Analysis of coenzyme Q in polyhistidine-tagged Coq10p purified from mitochondria indicates the presence 0.032-0.034 mol of Q(6)/mol of protein. We propose that Coq10p is a Q(6)-binding protein and that in the coq10 mutant Q(6) it is not able to act as an electron carrier, possibly because of improper localization.
Resumo:
Replication protein A (RPA) is a highly conserved heterotrimeric single-stranded DNA-binding protein involved in different events of DNA metabolism. In yeast, subunits 1 (RPA-1) and 2 (RPA-2) work also as telomerase recruiters and, in humans, the complex unfolds G-quartet structures formed by the 3' G-rich telomeric strand. In most eukaryotes, RPA-1 and RPA-2 bind DNA using multiple OB fold domains. In trypanosomatids, including Leishmania, RPA-1 has a canonical OB fold and a truncated RFA-1 structural domain. In Leishmania amazonensis, RPA-1 alone can form a complex in vitro with the telomeric G-rich strand. In this work, we show that LaRPA-1 is a nuclear protein that associates in vivo with Leishmania telomeres. We mapped the boundaries of the OB fold DNA-binding domain using deletion mutants. Since Leishmania and other trypanosomatids lack homologues of known telomere end binding proteins, our results raise questions about the function of RPA-1 in parasite telomeres. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In five male cirrhotic patients (Child A) and in four age- and sex-matched healthy control subjects, whole-body protein turnover was measured using a single oral dose of N-15-glycine as a tracer and urinary ammonia as end product. Subjects were studied in the fasting and feeding state, with different levels of protein and energy intake. The patients were underweight and presented lower plasma transthyretin and retinol-binding protein levels. When compared with controls, the kinetic studies showed patients to be hypometabolic in the fasting (Do) state and with the control diet [D-1 = (0.85 g of protein/154 kJ). kg(-1). day(-1)]. However, when corrected by body weight, the kinetic differences between groups disappeared, whereas the N-retention in the feeding state showed better results for the patients due mainly to their efficient breakdown decrease. When fed high-level protein or energy diets [D-2 = (0.9 g protein/195 kJ) and D-3 = (1.56 g protein/158 kJ). kg(-1). day(-1)], the patients showed D-0 = D-1 = D-2 < D-3 for N-flux and (D-0 = D-1) < D-3 (D-2 is intermediary) for protein synthesis. Thus, the present data suggest that the remaining mass of the undernourished mild cirrhotic patients has fairly good protein synthesis activity and also that protein, rather than energy intake, would be the limiting factor for increasing their whole-body protein synthesis.
Resumo:
Background: Glucosamine 6-phosphate deaminase from Escherichia coli is an allosteric hexameric enzyme which catalyzes the reversible conversion of D-glucosamine 6-phosphate into D-fructose 6-phosphate and ammonium ion and is activated by N-acetyl-D-glucosamine 6-phosphate. Mechanistically, it belongs to the group of aldose-ketose isomerases, but its reaction also accomplishes a simultaneous amination/deamination. The determination of the structure of this protein provides fundamental knowledge for understanding its mode of action and the nature of allosteric conformational changes that regulate its function. Results: The crystal structure of glucosamine 6-phosphate deaminase with bound phosphate ions is presented at 2.1 Å resolution together with the refined structures of the enzyme in complexes with its allosteric activator and with a competitive inhibitor. The protein fold can be described as a modified NAD-binding domain. Conclusions: From the similarities between the three presented structures, it is concluded that these represent the enzymatically active R state conformer. A mechanism for the deaminase reaction is proposed. It comprises steps to open the pyranose ring of the substrate and a sequence of general base-catalyzed reactions to bring about isomerization and deamination, with Asp72 playing a key role as a proton exchanger.
Resumo:
Adhesion is regarded as an important step in the pathogenesis of several microorganisms. Thus, the ability to recognize extracellular matrix proteins, such as laminin or fibronectin, has been correlated with invasiveness. Studying the already characterized laminin-binding protein of Paracoccidioides brasiliensis, the 43 kDa glycoprotein (gp43), we evaluated whether MAb 1.H12, raised against the laminin-binding protein from Staphylococcus aureus, cross-reacts with that fungal protein. By immunoblot analysis we show that MAb 1.H12 recognizes gp43. This interaction is able to inhibit the laminin-mediated adhesion to epithelial cells as well as the P. brasiliensis infection in vivo. Moreover, through immunoenzymatic assays, we show that MAb 1.H12 recognizes gp43 in solid phase and that this interaction is partially inhibited by the addition of anti-gp43 MAbs. These results show that MAb 1.H12 recognizes the gp43, suggesting the presence of an epitope similar to those found in the other laminin-binding proteins from phylogenetically very distant cells. These findings reinforce the possibility of evolutionary conservation of such epitopes.
Resumo:
Hrp1p is a heterogeneous ribonucleoprotein (hnRNP) from the yeast Saccharomyces cerevisiae that is involved in the cleavage and polyadenylation of the 3'-end of mRNAs and mRNA export. In addition, Hrp1p is one of several RNA-binding proteins that are posttranslationally modified by methylation at arginine residues. By using-functional recombinant Hrp1p, we have identified RNA sequences with specific high affinity binding sites. These sites correspond to the efficiency element for mRNA 3'-end formation, UAUAUA. To examine the effect of methylation on specific RNA binding, purified recombinant arginine methyltransferase (Hmt1p) was used to methylate Hrp1p. Methylated Hrp1p binds with the same affinity to UAUAUA-containing RNAs as unmethylated Hrp1p indicating that methylation does not affect specific RNA binding. However, RNA itself inhibits the methylation of Hrp1p and this inhibition is enhanced by RNAs that specifically bind Hrp1p. Taken together, these data support a model in which protein methylation occurs prior to protein-RNA binding in the nucleus.
Resumo:
The eukaryotic translation initiation factor 2 (eIF2) binds the methionyl-initiator tRNA in a GTP-dependent mode. This complex associates with the 40 S ribosomal particle, which then, with the aid of other factors, binds to the 5' end of the mRNA and migrates to the first AUG codon, where eIF5 promotes GTP hydrolysis, followed by the formation of the 80 S ribosome. Here we provide a comparative sequence analysis of the β subunit of eIF2 and its archaeal counterpart (aIF2β). aIF2β differs from eIF2β in not possessing an N-terminal extension implicated in binding RNA, eIF5 and eIF2B. The remaining sequences are highly conserved, and are shared with eIF5. Previously isolated mutations in the yeast eIF2β, which allow initiation of translation at UUG codons due to the uncovering of an intrinsic GTPase activity in eIF2, involve residues that are conserved in aIF2β, but not in eIF5. We show that the sequence of eIF2B homologous to aIF2β is sufficient for binding eIF2γ, the only subunit with which it interacts, and comprises, at the most, 78 residues, eIF5 does not interact with eIF2γ, despite its similarity with eIF2β, probably because of a gap in homology in this region. These observations have implications for the evolution of the mechanism of translation initiation.
Mapping eIF5A binding sites for Dys1 and Lia1: In vivo evidence for regulation of eIF5A hypusination
Resumo:
The evolutionarily conserved factor eIF5A is the only protein known to undergo hypusination, a unique posttranslational modification triggered by deoxyhypusine synthase (Dys1). Although eIF5A is essential for cell viability, the function of this putative translation initiation factor is still obscure. To identify eIF5A-binding proteins that could clarify its function, we screened a two-hybrid library and identified two eIF-5A partners in S. cerevisiae: Dys1 and the protein encoded by the gene YJR070C, named Lia1 (Ligand of eIF5A). The interactions were confirmed by GST pulldown. Mapping binding sites for these proteins revealed that both eIF5A domains can bind to Dys1, whereas the C-terminal domain is sufficient to bind Lia1. We demonstrate for the first time in vivo that the N-terminal α-helix of Dys1 can modulate enzyme activity by inhibiting eIF5A interaction. We suggest that this inhibition be abrogated in the cell when hypusinated and functional eIF5A is required. © 2003 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Human respiratory syncytial virus (HRSV) is the major cause of lower respiratory tract infections in children under 5 years of age and the elderly, causing annual disease outbreaks during the fall and winter. Multiple lineages of the HRSVA and HRSVB serotypes co-circulate within a single outbreak and display a strongly temporal pattern of genetic variation, with a replacement of dominant genotypes occurring during consecutive years. In the present study we utilized phylogenetic methods to detect and map sites subject to adaptive evolution in the G protein of HRSVA and HRSVB. A total of 29 and 23 amino acid sites were found to be putatively positively selected in HRSVA and HRSVB, respectively. Several of these sites defined genotypes and lineages within genotypes in both groups, and correlated well with epitopes previously described in group A. Remarkably, 18 of these positively selected tended to revert in time to a previous codon state, producing a flipflop phylogenetic pattern. Such frequent evolutionary reversals in HRSV are indicative of a combination of frequent positive selection, reflecting the changing immune status of the human population, and a limited repertoire of functionally viable amino acids at specific amino acid sites.
Resumo:
Annexin A1 (AnxA1) is a protein that displays potent anti-inflammatory properties, but its expression in eye tissue and its role in ocular inflammatory diseases have not been well studied. We investigated the mechanism of action and potential uses of AnxA1 and its mimetic peptide (Ac2-26) in the endotoxin-induced uveitis (EIU) rodent model and in human ARPE-19 cells activated by LPS. In rats, analysis of untreated EIU after 24 and 48 h or EIU treated with topical applications or with a single s.c. injection of Ac2-26 revealed the anti-inflammatory actions of Ac2-26 on leukocyte infiltration and on the release of inflammatory mediators; the systemic administration of Boc2, a formylated peptide receptor (fpr) antagonist, abrogated the peptide's protective effects. Moreover, AnxA1-/- mice exhibited exacerbated EIU compared with wild-type animals. Immunohistochemical studies of ocular tissue showed a specific AnxA1 posttranslational modification in EIU and indicated that the fpr2 receptor mediated the anti-inflammatory actions of AnxA1. In vitro studies confirmed the roles of AnxA1 and fpr2 and the protective effects of Ac2-26 on the release of chemical mediators in ARPE-19 cells. Molecular analysis of NF-κB translocation and IL-6, IL-8, and cyclooxygenase-2 gene expression indicated that the protective effects of AnxA1 occur independently of the NF-κB signaling pathway and possibly in a posttranscriptional manner. Together, our data highlight the role of AnxA1 in ocular inflammation, especially uveitis, and suggest the use of AnxA1 or its mimetic peptide Ac2-26 as a therapeutic approach. Copyright © 2013 by The American Association of Immunologists, Inc.
Resumo:
Background: Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results: In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Conclusions: Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication. © 2013 Morais et al.; licensee BioMed Central Ltd.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)