70 resultados para magnetic field modulation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparison between experimental measurements and numerical calculations of the ion current distribution in plasma immersion ion implantation (PIII) with external magnetic field is presented. Later, Silicon samples were implanted with nitrogen ion to analyze the effect on them. The magnetic field considered is essentially non-uniform and is generated by two magnetic coils installed on vacuum chamber. The presence of both, electric and magnetic field in PIII create a crossed ExB field system, promoting drift velocity of the plasma around the target. The results found shows that magnetized electrons drifting in ExB field provide electron-neutral collision. The efficient ionization increases the plasma density around the target where a magnetic confinement is formed. As result, the ion current density increases, promoting significant changes in the samples surface properties, especially in the surface wettability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic properties of disordered binary alloys are studied via the calculation of the average Density of States (DOS) in two and three dimensions. We propose a new approximate scheme that allows for the inclusion of local order effects in finite geometries and extrapolates the behavior of infinite systems following finite-size scaling ideas. We particularly investigate the limit of the Quantum Site Percolation regime described by a tight-binding Hamiltonian. This limit was chosen to probe the role of short range order (SRO) properties under extreme conditions. The method is numerically highly efficient and asymptotically exact in important limits, predicting the correct DOS structure as a function of the SRO parameters. Magnetic field effects can also be included in our model to study the interplay of local order and the shifted quantum interference driven by the field. The average DOS is highly sensitive to changes in the SRO properties and striking effects are observed when a magnetic field is applied near the segregated regime. The new effects observed are twofold: there is a reduction of the band width and the formation of a gap in the middle of the band, both as a consequence of destructive interference of electronic paths and the loss of coherence for particular values of the magnetic field. The above phenomena are periodic in the magnetic flux. For other limits that imply strong localization, the magnetic field produces minor changes in the structure of the average DOS. © World Scientific Publishing Company.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the Feynman procedure of ordered exponential operators we solve the evolution equations for a two-neutrino system considering arbitrarily varying matter density and magnetic field along the neutrino trajectory. We show that a large geometrical phase velocity suppresses νL→νR transitions unless some stationary trajectory is found along the neutrino path. Concerning the solar neutrino case, if we admit the standard solar model matter distribution, no such trajectory can be found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed a procedure to take advantage of the magnetic-field-modulation-frequency effect on the line shape of conduction-electron-spin resonance of graphite intercalation compounds (GIC's) to extract the absolute value of the in-plane resistivity. We calculated the power absorbed in each slice of the sample normal to the wave penetration, multiplied by a factor to account for the magnetic-field-modulation-frequency effect. Room-temperature spectra of stage-I AlCl3-intercalated GIC in both H-0 perpendicular-to c and H-0 parallel-to c configurations were fitted to the theoretical line shapes and the value of in-plane resistivity (and also the value of c-axis resistivity) obtained from the fitting parameters are in reasonable agreement with those from the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2+1 and 3+1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was conducted on the dynamics of 2D and 3D Bose-Einstein condensates in the case when the scattering length in the Gross-Pitaevskii (GP) equation which contains constant (dc) and time-variable (ac) parts. Using the variational approximation (VA), simulating the GP equation directly, and applying the averaging procedure to the GP equation without the use of the VA, it was demonstrated that the ac component of the nonlinearity makes it possible to maintain the condensate in a stable self-confined state without external traps.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Objective. Measure physical therapists' exposure to the electric and magnetic fields produced by 17 shortwave diathermy devices in physical therapy clinics in the city of Presidente Prudente, São Paulo State, Brazil. Compare the observed values with the exposure levels recommended by the International Commission on Non-ionizing Radiation Protection (ICNIRP). Observe the efficacy of Faraday cages as a means of protecting physical therapists from exposure to oscillating electric and magnetic fields.Methods. Electric and magnetic field measurements were taken at four points during actual physical therapy sessions: in proximity to the operator's pelvis and head, the devices' electrical cables, and the electrodes. The measuring equipment was a Wandel & Goltermann EMR-200.Results. The values obtained in proximity to the electrodes and cables were 10 to 30 times higher than ICNIRP's recommended occupational reference levels. In the shortwave diathermy treatment rooms with Faraday cages, the fields were even higher than in treatment rooms not so equipped-principally the magnetic field, where the values were more than 100 times higher than the ICNIRP exposure limit.Conclusions. The electric and magnetic field intensities obtained in this study are generally above the exposure levels recommend in ICNIRP standards. It was also observed that the Faraday cage offers physical therapists no protection, and instead, increases their level of exposure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effects of an in-plane electric field and eccentricity on the electronic spectrum of a GaAs quantum ring in a perpendicular magnetic field are studied. The effective-mass equation is solved by two different methods: an adiabatic approximation and a diagonalization procedure after a conformal mapping. It is shown that the electric field and the eccentricity may suppress the Aharonov-Bohm oscillations of the lower energy levels. Simple expressions for the threshold energy and the number of flat energy bands are found. In the case of a thin and eccentric ring, the intensity of a critical field which compensates the main effects of eccentricity is determined. The energy spectra are found in qualitative agreement with previous experimental and theoretical works on anisotropic rings.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we describe a two-dimensional computer simulation of magnetic field enhanced plasma immersion implantation system. Negative bias voltage of 10.0 kV is applied to a cylindrical target located on the axis of a grounded vacuum chamber filled with uniform nitrogen plasma. A pair of external coils creates a static magnetic field with main vector component along the axial direction. Thus, a system of crossed ExB field is generated inside the vessel forcing plasma electrons to rotate in azimuthal direction. In addition, the axial variation of the magnetic field intensity produces magnetic mirror effect that enables axial particle confinement. It is found that high-density plasma regions are formed around the target due to intense background gas ionization by the trapped electrons. Effect of the magnetic field on the sheath dynamics and the implantation current density of the PIII system is investigated. By changing the magnetic field axial profile (varying coils separation) an enhancement of about 30% of the retained dose can be achieved. The results of the simulation show that the magnetic mirror configuration brings additional benefits to the PIII process, permitting more precise control of the implanted dose.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasma immersion ion implantation (PIII) with low external magnetic field has been investigated both numerically and experimentally. The static magnetic field considered is essentially nonuniform and is generated by two magnetic coils installed outside the vacuum chamber. Experiments have been conducted to investigate the effect of two of the most important PIII parameters: target voltage and gas pressure. In that context, it was found that the current density increased when the external parameters were varied. Later, the PIII process was analyzed numerically using the 2.5-D computer code KARAT. The numerical results show that the system of crossed E x B fields enhances the PIII process. The simulation showed an increase of the plasma density around the target under the operating and design conditions considered. Consequently, an increase of the ion current density on the target was observed. All these results are explained through the mechanism of gas ionization by collisions with electrons drifting in crossed E x B fields.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The resistivity of a field reversed configuration in a theta-pinch with slow rising current was investigated during the turbulent phase from the moment of field reversal until end of plasma radial implosion. This transport coefficient was obtained in a hydrogen plasma by local measurements with magnetic probe and compared to numerical calculations with Chodura resistivity and evolution of lower hybrid drift instability. The values of resistivity are higher than those predicted by classical binary collision. During early phase of confinement, the doubly layer structure of current sheath in the low electric field machine was theoretically well reproduced with anomalous collision frequency calculated with Chodura resistivity that provides appropriate conditions for onset of lower hybrid drift instability and the regular evolution of pinch. The plasma dynamic, radial profiles of magnetic field during the radial compression and resistivity values were equally close to those observed by the measurements. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3698405]