217 resultados para luting cement
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This study aimed to investigate the influence of ceramic thickness and shade on the Knoop hardness and dynamic elastic modulus of a dual-cured resin cement.Materials and Methods: Six ceramic shades (Bleaching, A1, A2, A3, A3.5, B3) and two ceramic thicknesses (1 mm, 3 mm) were evaluated. Disk specimens (diameter: 7 mm; thickness: 2 mm) of the resin cement were light cured under a ceramic block. Light-cured specimens without the ceramic block at distances of 1 and 3mm were also produced. The Knoop hardness number (KHN), density, and dynamic Young's moduli were determined. Statistical analysis was conducted using ANOVA and a Tukey B rank order test (p = 0.05).Results: The bleaching 1-mm-thick group exhibited significantly higher dynamic Young's modulus. Lower dynamic Young's moduli were observed for the 3-mm-thick ceramic groups compared to bleaching 3-mm-thick group, and no difference was found among the other 3-mm groups. For the KHN, when A3.5 3-mm-thick was used, the KHN was significantly lower than bleaching and A1 1-mm-thick ceramic; however, no difference was exhibited between the thicknesses of the same shade.Conclusions: The dual-cured resin cement studied irradiated through the 1-mm-thick ceramic with the lightest shade (bleaching ceramic) exhibited a better elastic modulus, and there was no effect in KHN of the resin cement when light cured under different ceramic shades and thicknesses (1 and 3 mm), except when the A3.5 3-mm-thick ceramic was used.Clinical Significance: Variolink II irradiated through ceramic with the lowest chroma exhibited the highest elastic modulus; therefore, the light activation method might not be the same for all clinical situations.
Resumo:
Statement of problem Because zirconia is a glass-free material, alternative surface treatments such as airborne-particle abrasion or silica coating should be used for long-term bonding. However, these surface treatments in combination with different bonding agents and luting cements have not yet been studied. Purpose The purpose of the study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of luting cements to Y-TZP ceramic. Material and methods Zirconia disks (N=240) were airborne-particle abraded with the following particles (n=48): 50 μm Al2O3; 120 μm Al2O3; 30 μm silica-coated Al2O3 (Rocatec Soft); 120 μm Al2O3+110 μm silica-coated Al2O3 (Rocatec Plus); and Rocatec Plus. After silanization of the zirconia surface, composite resin disks were bonded with (n=12) RelyX Luting 2; RelyX ARC; RelyX U100; and Panavia F. The bonded specimens were thermocycled (10 000 cycles) and tested for SBS. Failure mode was determined with a stereomicroscope (×20). The morphology and elemental composition of airborne-particle abraded surfaces were evaluated with scanning electron microscopy (×500) and energy-dispersive x-ray spectroscopy (×50). Results Surface treatments, cements, and their interaction were significant (P<.001). For RelyX ARC, Rocatec Soft and Rocatec Plus provided the highest SBS. In general, surface treatments did not influence the SBS of RelyX U100 and Panavia F. Regardless of the cement, no significant difference was found between 50 μm and 120 μm Al2O3 particles, between Rocatec Soft and Rocatec Plus, or between Rocatec Plus and 120 μm Al2O3 particles+Rocatec Plus. All groups showed adhesive failures. Different particle sizes provided differences in morphological patterns. The elemental composition comprised Al and Al/Si for alumina and silica-abraded zirconia. Conclusions Particle size did not influence the SBS of the groups abraded exclusively with alumina or silica-coated particles. RelyX ARC was more surface-treatment dependent than RelyX U100 or Panavia F.
Resumo:
Objective: The purpose of this study was to assess the influence of conditioning methods and thermocycling on the bond strength between composite core and resin cement. Material and Methods: Eighty blocks (8x8x4 mm) were prepared with core build-up composite. The cementation surface was roughened with 120-grit carbide paper and the blocks were thermocycled (5,000 cycles, between 5 degrees C and 55 degrees C, with a 30 s dwell time in each bath). A layer of temporary luting agent was applied. After 24 h, the layer was removed, and the blocks were divided into five groups, according to surface treatment: (NT) No treatment (control); (SP) Grinding with 120-grit carbide paper; (AC) Etching with 37% phosphoric acid; (SC) Sandblasting with 30 mm SiO2 particles, silane application; (AO) Sandblasting with 50 mu m Al2O3 particles, silane application. Two composite blocks were cemented to each other (n=8) and sectioned into sticks. Half of the specimens from each block were immediately tested for microtensile bond strength (mu TBS), while the other half was subjected to storage for 6 months, thermocycling (12,000 cycles, between 5 degrees C and 55 degrees C, with a dwell time of 30 s in each bath) and mu TBS test in a mechanical testing machine. Bond strength data were analyzed by repeated measures two-way ANOVA and Tukey test (alpha=0.05). Results: The mu TBS was significantly affected by surface treatment (p=0.007) and thermocycling (p=0.000). Before aging, the SP group presented higher bond strength when compared to NT and AC groups, whereas all the other groups were statistically similar. After aging, all the groups were statistically similar. SP submitted to thermocycling showed lower bond strength than SP without thermocycling. Conclusion: Core composites should be roughened with a diamond bur before the luting process. Thermocycling tends to reduce the bond strength between composite and resin cement.
Resumo:
To evaluate the transdentinal cytotoxicity of resin-based luting cements (RBLCs), with no HEMA in their composition, to odontoblast-like cells. Human dentine discs 0.3 mm thick were adapted to artificial pulp chambers (APCs) and placed in wells of 24-well plates containing 1 mL of culture medium (DMEM). Two categories of HEMA-free RBLCs were evaluated: group 1, self-adhesive Rely X Unicem (RU; 3M ESPE), applied directly to the dentine substrate; and group 2, Rely X ARC (RARC; 3M ESPE), applied to dentine previously acid-etched and treated with a bonding agent. In group 3 (control), considered as representing 100% cell metabolic activity, no treatment was performed on dentine. The APC/disc sets were incubated for 24 h or 7 days at 37 °C and 5% CO2 . Then, the extracts (DMEM + dental materials components that diffused through dentine) were applied to cultured odontoblast-like MDPC-23 cells for 24 h. After that, the cell viability (MTT assay), cell morphology (SEM), total protein production (TP) and alkaline phosphatase (ALP) activity were assessed. Data from MTT assay and TP production were analysed by Kruskal-Wallis and Mann-Whitney tests (α = 5%). Data from ALP activity were analysed by one-way anova and Tukey's test (α = 5%). In group 1, a slight reduction in cell viability (11.6% and 16.8% for 24-h and 7-day periods, respectively) and ALP activity (13.5% and 17.9% for 24-h and 7-day periods, respectively) was observed, with no significant difference from group 3 (control) (P > 0.05). In group 2, a significant reduction in cell viability, TP production and ALP activity compared with group 3 (control) occurred (P < 0.05), regardless of incubation time. Alteration in MDPC-23 cell morphology was observed only in group 2. HEMA-free Rely X ARC cement caused greater toxicity to odontoblast-like MDPC-23 cells than did Rely X Unicem cement when both resin-based luting materials were applied to dentine as recommended by the manufacturer.
Resumo:
The aim of this study was to evaluate the radiopacity of two conventional cements (Zinc Cement and Ketac Cem Easymix), one resin-modified glass ionomer cement (RelyX Luting 2) and six resin cements (Multilink, Bistite II DC, RelyX ARC, Fill Magic Dual Cement, Enforce and Panavia F) by digitization of images. Methods. Five disc-shaped specimens (10×1.0 mm) were made for each material, according to ISO 4049. After setting of the cements, radiographs were made using occlusal films and a graduated aluminum stepwedge varying from 1.0 to 16 mm in thickness. The radiographs were digitized, and the radiopacity of the cements was compared with the aluminum stepwedge using the software VIXWIN-2000. Data (mmAl) were submitted to one-way ANOVA and Tukey's test (=0.05). Results. The Zinc Cement was the most radiopaque material tested (<0.05). The resin cements presented higher radiopacity (<0.05) than the conventional (Ketac Cem Easymix) or resin-modified glass ionomer (RelyX Luting 2) cements, except for the Fill Magic Dual Cement and Enforce. The Multilink presented the highest radiopacity (<0.05) among the resin cements. Conclusion. The glass ionomer-based cements (Ketac Cem Easymix and RelyX Luting 2) and the resin cements (Fill Magic Dual Cement and Enforce) showed lower radiopacity values than the minimum recommended by the ISO standard.
Resumo:
Aims and Objectives: The aim of this study was to analyze the microhardness of three resin cements used in cementing glass fiber posts in bovine incisor. The microhardness was analyzed in cervical, middle and apical thirds before and after thermocycling process. Materials and Methods: Bovine teeth were instrumented and divided into 3 groups composed of 10 teeth each. Then, the teeth were sectioned and obturated and had their canals prepared at a depth of 12mm. Once proceeded the desobturation, the roots and glass fiber posts were prepared for adhesive cementation. After cementation, the microhardness reading was carried out. After initial reading, the samples were placed in a thermocycler and subjected to 2,000 cycles and a new microhardness reading. The data collected were subjected to analysis of variance (ANOVA) and Turkey’s test. Results: It was observed a statistical difference among the microhardness of resin cements. However, the statistical difference of microhardness before and after thermocycling appeared only in group U-200. Conclusion: Thermocycling reduced microhardness values in all cements evaluated in this study. The autopolymerizing cement Multilink presented the most stable microhardness mean values after thermocycling in the coronal, middle and apical thirds.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Extensive bone defects in maxillofacial region can be corrected with autogenous grafts; otherwise, the disadvantages of the therapeutics modality take the research for new bone substitutes. The aim of the study was to evaluate and compare the osteoconductive properties of 3 commercial available biomaterials. A total of 30 calvarial defects (5-mm diameter) were randomly divided into 5 treatment groups, with a total of 6 defects per treatment group (n = 6). The treatment groups were as follows: 500 to 1000 Km beta-tricalcium phosphate (beta-TCP), polylactic and polyglycolic acid (PL/PG) gel, calcium phosphate cement, untreated control, and autograft control. The evaluations were based on histomorphometric analysis at 60 postoperative days. The results have shown that beta-TCP and autograft control supported bone formation at 60 postoperative days. beta-Tricalcium phosphate showed the highest amount of mineralized area per total area and statistically significant compared with PL/PG, calcium phosphate cement, and untreated control groups. The PL/PG gel does not have osteoconductive properties and performed similar to empty control. Calcium phosphate cement showed higher number of multinucleated giant cells around the sites of the biomaterial and showed newly formed bone only at the edges of the biomaterial, without bone formation within the biomaterial. The findings presented herein indicate that bone formation reached a maximum level when rat calvarial defects were filled with beta-TCP at 60 postoperative days. Further studies should be conducted with beta-TCP to understand the potential of this biomaterial in bone regeneration.
Resumo:
The cementation procedure of metal-free fixed partial dentures exhibits special characteristics about the porcelains and cementation agents, which turns the correct association between these materials necessary. Our purpose in this literature review was to point the main groups of cements associated to metal-free restoration and discuss about the advantages, disadvantages, and recommendations of each one. Our search was confined to the electronic databases PubMed and SciELO and to books about this matter. There are essentially 3 types of hard cement: conventional, resin, or a hybrid of the two. The metal-free restorations can be fixed with conventional or resin cements. The right choice of luting material is of vital importance to the longevity of dental restorative materials. Conventional cements are advantageous when good compressive straight, good film thickness, and water dissolution resistance are necessary. However, they need an ideal preparation, and they are not acid dissolution resistant. Conventional cements are indicated to porcelains that cannot be acid etched. Resin cements represent the choice to metal-free restoration cementation because they present better physical properties and aesthetic than conventional agents.
Resumo:
This study evaluated: 1) the effect of different ceramics on light attenuation that could affect microhardness, measured as the Knoop Hardness Number (KHN), of a resin cement immediately and 24 hours after polymerization and 2) the effect of different activation modes (direct light-activation, light activation through ceramics and chemical activation) on the KHN of a resin cement.Resin cement Rely X ARC (3M ESPE) specimens 5.0 mm in diameter and 1.0 nun thick were made in a Teflon mold covered with a polyester film. The cement was directly light activated for 40 seconds with an XL 2500 curing unit (3M ESPE) with 650 mW/cm(2), light activated through ceramic discs of Duceram Plus (DeguDent), Cergogold (DeguDent), IPS Empress (Ivoclar), IPS Empress 2 (Ivoclar), Procera. (NobelBiocare), In Ceram Alumina (Vita) and Cercon (DeguDent), having a 1.2 mm thickness or chemically activated without light application. The resin cement specimens were flattened, and KHN was obtained using an HMV 2 microhardness tester (Shimadzu) with a load of 50 g applied for 15 seconds 100 pin from the irradiated surface immediately and after storage at 37 degrees C for 24 hours. Ten measurements were made for each specimen, with three specimens for each group at each time. The data were submitted to ANOVA and Tukey's test (p=0.05). The KHN of the resin cement was not only affected by the mode of activation, but also by the post-activation testing time. The mean KHN of the resin cement for chemical activation and through all ceramics showed statistically significant lower values compared to direct activation immediately and at 24 hours. The KHN for 24 hours post-activation was always superior to the immediate post-activation test except with direct activation. The most opaque ceramics resulted in the lowest KHN values.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Introduction: A new cement (CER; Cimento Endodontico Rapido or fast endodontic cement) has been developed to improve handling properties. It is a formulation that has Portland cement in gel. However, there had not yet been any study evaluating its biologic properties. The purpose of this study was to evaluate the rat subcutaneous tissue response to CER and Angelus MTA. Methods: The materials were placed in polyethylene tubes and implanted into dorsal connective tissue of Wistar rats for 7, 30, and 60 days. The specimens were prepared to be stained with hematoxylin-eosin or von Kossa or not stained for polarized light. The presence of inflammation, predominant cell type, calcification, and thickness of fibrous connective tissue were recorded. Scores were defined as follows: 0, none or few inflammatory cells, no reaction; 1, <25 cells, mild reaction; 2, 25-125 cells, moderate reaction; 3, >125 cells, severe reaction. Fibrous capsule was categorized as thin when thickness was <150 mu m and thick at >150 mu m. Necrosis and formation of calcification were both recorded. Results: Both materials Angelus MTA and CER caused moderate reactions at 7 days, which decreased with time. The response was similar to the control at 30 and 60 days with Angelus MTA and CER, characterized by organized connective tissue and presence of some chronic inflammatory cells. Mineralization and granulations birefringent to polarized light were observed with both materials. Conclusions: It was possible to conclude that CER was biocompatible and stimulated mineralization. (J Endod 2009,35:1377-1380)
Resumo:
This study evaluated the histomorphologic response of human dental pulps capped with mineral trioxide aggregate (MTA) and Ca(OH)(2) cement (CH). Pulp exposures were performed on the occlusal floor of 40 human permanent premolars. After that, the pulp was capped either with CH or MTA and restored with composite resin. After 30 and 60 days, teeth were extracted and processed for histologic exam and categorized in a histologic score system. The data were subjected to Kruskal-Wallis and Conover tests (alpha = .05). All groups performed well in terms of hard tissue bridge formation, inflammatory response, and other pulpal findings. However, a lower response of CH30 was observed for the dentin bridge formation, when compared with MTA30 and MTA60 groups. Although the pulp healing with calcium hydroxide was slower than that of MTA, both materials were successful for pulp capping in human teeth.
Resumo:
Objectives. To evaluate the response of the pulpo-dentin complex following application of a resin-modified glass-ionomer cement or an adhesive system in deep cavities performed in human teeth.Methods. Deep class V cavities were prepared on the buccal surface of 26 premolars. In Group I the cavity walls (dentin) and enamel were conditioned with 32% phosphoric acid and the dentin adhesive system One Step (Bisco, Inc., Itasca, IL, USA) was applied. In Groups 2 and 3, before total etching and application of bonding agent, the cavity floor was lined with the resin-modified glass-ionomer cement-Vitrebond (3M ESPE Dental Products Division, St. Paul, MN, USA) or the calcium hydroxide cement-Dycal (control group, Dentsply, Mildford, DE, USA), respectively. The cavities were restored using light-cured Z-100 composite resin (3M ESPE). The teeth were extracted between 5 and 30 days and prepared for microscopic assessment. Serial sections were stained with H/E, Masson's trichrome, and Brown and Brenn techniques.Results. In Group 1, the inflammatory response was more evident than in Groups 2 and 3. Diffusion of dental material components across dentinal tubules was observed only in Group 1, in which the intensity of the pulp response increased as the remaining dentin thickness decreased. Bacteria were evidenced in the lateral walls of two samples (Group 2) which exhibited no inflammatory response or tissue disorganization.Conclusions. Based on the experimental conditions, it was concluded total acid etching followed by application of One Step bonding agent cannot be recommended as adequate procedures. In this clinical condition the cavity walls should be lined with a biocompatible dental material, such as Vitrebond or Dycal. 2003 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.