236 resultados para lining epithelium
Resumo:
Bivalve filter feeders are sessile animals that live in constant contact with water and its pollutants. Their gill is an organ highly exposed to these conditions due to its large surface and its involvement in gas exchanges and feeding. The bivalve Mytella falcata is found in estuaries of Latin America, on the Atlantic as well as the Pacific Coast. It is commonly consumed, and sometimes is the only source of protein of low-income communities. In this study, gill filaments of M. falcata were characterized using histology, histochemistry and transmission electron microscopy for future comparative studies among animals exposed to environmental pollutants. Gill filaments may be divided into abfrontal, intermediate and frontal zones. Filaments are interconnected by ciliary discs. In the center of filaments, haemocytes circulate through a haemolymph vessel internally lined by an endothelium and supported by an acellular connective tissue rich in polysaccharides and collagen. The abfrontal zone contains cuboidal cells, while the intermediate zone consists of a simple squamous epithelium. The frontal zone is composed of five columnar cell types: one absorptive, mainly characterized by the presence of pinocytic vesicles in the apical region of the cell; one secretory, rarely observed and three ciliated with abundant mitochondria. All cells lining the filament exhibit numerous microvilli and seem to absorb substances from the environment. PAS staining was observed in mucous cells in the frontal and abfrontal zones. Bromophenol blue allowed the distinction of haemocytes and detection of a glycoprotein secretion in the secretory cells of the frontal region. The characteristics of M. falcata gill filaments observed in this study were very similar to those of other bivalves, especially other Mytilidae, and are suitable for histopathological studies on the effect of water-soluble pollutants. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The female prostate has aroused scientific interest because it is subjected to the same diseases compromising the male prostate during aging. The objective of this work was to characterize structurally, cytochemically, and ultrastructurally the tissue compartments of the normal adult female prostate of Meriones unguiculatus gerbils. The morphological analyses showed that the gerbil's female prostate is constituted of a cluster of glands and ducts inserted in a musculofibrous stroma. The alveolar epithelium is differentiated and consisted of basal proliferating cells, intermediary cells, and secretory cells. The secretory cells are the most numerous cell type and continuously secrete glycoproteins. The basal cells are the source of the secretory cells and they are then responsible for the alveolus renovation. The prostatic stroma is abundant and rich in elastic and collagen fibers, which are closely associated with smooth muscle cells and fibroblasts. The results showed that the gerbil's female prostate shows morphological and ultrastructural homology to the human female prostate (Skene's gland), and despite being a small organ, it is a mature and physiologically active gland. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: To investigate the proliferative behavior of the corneal and limbal epithelia after debridement on the central region of the rabbit cornea. Methods: After scraping a circular epithelial area, 5 mm in diameter, in the center of the cornea, (3)H-thymidine ((3)H-TdR) was injected intravitreally, and the rabbits killed from 1 to 49 days afterward. The cornea, together with the adjacent conjunctiva, was processed for autoradiography. Results: The regenerating epithelium at the center of the cornea exhibited high frequencies of labeled nuclei when compared to controls. The mitotic indexes for the limbus were comparable in experimental and control eyes. The unique basal stratum of the limbal epithelium exhibited quick proliferation and vertical migration in all eyes. Cells that remained labeled for four weeks or more were observed throughout the corneal epithelium, including its basal stratum, and this did not depend on epithelial damage. Conclusion: Corneal epithelium wounds are healed by sliding and proliferation of cells surrounding the epithelial gap without any evidence for the participation of the limbal epithelium. Daughter cells labeled with (3)H-TdR were visualized in all layers of the corneal epithelium up to 7 weeks after the DNA precursor injection. However, at this long interval, the only labeled cells in the limbus were in the suprabasal layers.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background Damage to the corneal epithelium causes not only a reaction for its repair but also affects other parts of the cornea as well as different components of the anterior segment of the eye. The purpose of this investigation was to analyze the consequences, following epithelial and limbal damage, to the iris of rabbits (Oryctolagus cuniculus).Methods The corneal epithelium was thoroughly scraped followed by surgical excision of the limbus. Next, (3)H-thymidine ((3)H-TdR) was injected intravitreally both into the right (experimental) and left (control) eyes which had their anterior segments processed for autoradiography at intervals of 2, 7 and 21 days after surgery (three rabbits per interval). The irises were also examined with scanning-electron and confocal microscopy after Evans blue injection.Results There was a high frequency of labeling in the cells of the iris blood vessels in the experimental eye, particularly the endothelial ones. The ratio of labeled cells between experimental and control irises was 40:1, with a population of nuclei increasing by 25% and remaining labeled up to 21 days. There was also an increase in the volume of the iris vasculature as shown by confocal microscopy. The high labeling frequencies of the vascular cells were observed throughout the iris from the ciliary to the pupillary regions.Conclusions The lesions on the corneal epithelium elicit proliferation of the iris vascular cells, mainly its endothelium, as well as an early breakdown of the blood-aqueous barrier. The daughter cells resulting from the damage to the eye surface were detected up to 21 days after a single injection of (3)H-TdR, most likely due to their slow turnover. As a consequence of this proliferation, the vasculature of the iris increased in volume.
Resumo:
The investigation was centered on the morphological features of the conjunctiva-cornea transition (limbus) of the rabbit eye and the proliferative behavior of its epithelium. The eyes were processed for examination with light and electron microscopy, as well as for autoradiography after intravitreal injection of [H-3]thymidine ([H-3]TdR). At the sites of extraocular muscle insertion, the vascularization of the stroma extended to the peripheral cornea, and the limbal epithelium was thin with its basal stratum made up by clear cuboidal cells. In between the muscle insertions, the cuboidal clear cells, as well as the stroma blood vessels; were scarce. At the light microscope level, the basement membrane was distinct in the cornea but not in the limbus or the conjunctiva. Autoradiographs demonstrated that, at the limbus, the basal cells migrated very quickly to the suprabasal region and remained there up to the 28-day interval. Labeled cells were identified in all epithelial layers of the cornea, including the basal one, at 21 and 28 days but not in the limbal basal clear cells. The rate of renewal of conjunctival epithelium was similar to that observed for the transition with scarce clear cells. The high-resolution autoradiographs demonstrated that the basal cuboidal clear limbal cells exhibit a quick renewal and that they are not label-retaining cells. These latter ones were detected all over the corneal epithelium and in the suprabasal layers of the limbus up to 28 days, in physiological conditions, without the need of stimulation by damage to the corneal epithelium.
Resumo:
Neste trabalho é mostrada a grande quantidade de material eletrondenso intercelular no epitélio folicular de P. microps. Aparentemente, o material é captado da circulação e enviado para o folículo por meio dos espaços intercelulares, acumulando-se nos espaços intercelulares médio-apicais do epitélio e no espaço perioocítico. A acumulação é iniciada no oócito primário e prossegue até a vitelogênese. A natureza química desse material é discutida.
Resumo:
OBJETIVO: Avaliar as alterações morfológicas no epitélio traqueal de cães expostos à inalação de gases pouco condicionados, sob ventilação com tubo traqueal (TT) ou máscara laríngea (ML). MÉTODOS: Doze cães adultos foram divididos aleatoriamente em dois grupos: grupo TT (n-6) e grupo ML (n-6), submetidos à anestesia venosa e ventilação mecânica, em sistema sem reabsorção de CO2. Foram registrados parâmetros hemodinâmicos e ventilatórios, temperatura timpânica, temperatura, umidade relativa e absoluta do ar ambiente e dos gases inalados durante 3 horas. Ao término do experimento, os animais foram submetidos a eutanásia e realizadas biópsias ao longo do segmento traqueal para estudo morfológico. Três cães saudáveis foram utilizados para controle morfológico. RESULTADOS: A temperatura dos gases inalados manteve-se entre 24ºC e 26ºC, a umidade relativa entre 10% e 12%, e umidade absoluta entre 2 -3 mg H2O.L-1 sem diferença significativa entre os grupos. em ambos os grupos a análise histológica evidenciou processo inflamatório epitelial e congestão no córion, e a microscopia eletrônica de varredura mostrou agrupamento e desorganização ciliar. A microscopia eletrônica de transmissão detectou maiores alterações no grupo TT do que no ML, como alargamento das junções intercelulares, desorientação ciliar, vacuolização citoplasmática, alterações nucleares como pcinose e condensação da cromatina. CONCLUSÃO: A máscara laríngea determinou alterações menos pronunciadas no epitélio traqueal de cães expostos à inalação de gases pouco condicionados.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O ducto epididimário, no cão, acha-se revestido por epitélio colunar pseudoestratificado, com população celular constituída por células principais, basais e apicais, presentes em todas as regiões. Este epitélio é circundado pelo estroma peritubular. O epitélio do segmento inicial epididimário possui a maior altura, que diminui progressivamente em direção à cauda epididimária. Ocorre um aumento progressivo do lúmen tubular através das diferentes regiões, sendo maior na região da cauda epididimária, configurando um local de estocagem de espermatozóides.
Resumo:
The spermatogenesis of two goats bearing a 5/15 Robertsonian translocation was investigated by electron microscopy. There was no dramatic change in the morphology of the cells of the spermatic line. All cells of the seminiferous epithelium seemed quite normal at the ultrastructural level. However a certain disturbance in the cell localization and some morphological abnormalities involving nuclear structure were seen. Spermatocytes and spermatids normal in appearance were observed, but a great number of cells presented two or more nuclei. These cells were frequently seen to become degenerated during spermatogenesis. We believe that unbalanced spermatocytes degenerate during the process and only some spermatocytes succeed in fertilizing gametes.
Resumo:
The gonads and the germinative cells of 3 male hinnies were studied with light and transmission electron microscopy with the aim to observe the development of germ cells and verify the morphological modifications due to the hybridization. The hinny seminiferous epithelium presented Sertoli cells and spermatogonia with normal features and anomalous spermatocytes I. The other cells from the spermatogenic sequence were not seen. Most of the alterations began to occur in the cytes I, which presented nuclear vacuolization and deposits of amorphous material between the carioteca and the nuclear lamina, forming vesicles, or exaggerated chromatin condensation, resulting in pyknosis. In the cytoplasm vacuolization was also observed, besides organelle destruction.The arrest of meiosis due to lock of chromosome homologies leads to germinative cell degeneration and, therefore, the spermatogenesis arrest. This fact causes a profound alteration in the seminiferous epithelium morphology in comparison with the parental species.