187 resultados para linear and nonlinear differential and integral equations
Resumo:
The objective of this study was to obtain a mathematical equation to estimate the leaf area of Panicum maximum using linear measures of leaf blade. Correlation studies were conducted involving the real leaf area (Sf), the main vein leaf length (C), and the maximum leaf width (L). The linear and geometric equations related to C provided good leaf area estimates. For practical reasons, the use of an equation involving only the C*L product is suggested. Thus, an estimate of P. maximum leaf area can be obtained by the equation Sf = 0.6058 (C*L), with the coefficient of determination R = 0.8586.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper discusses the dynamic behaviour of a nonlinear two degree-of-freedom system consisting of a harmonically excited linear oscillator weakly connected to a nonlinear attachment having linear and cubic restoring forces. The effects of the system parameters on the shape of the frequency-response curve are investigated, in particular those yielding the appearance and disappearance of outer and inner detached resonance curves. In contrast to the case when the linear stiffness of the attachment is zero, it is found that multivaluedness occurs at low frequencies as the resonant peak bends to the right. It is also found that as the coefficient of the linear term increases, the range of parameters yielding detached curves reduces. Compared to the case when the attached system has no linear stiffness term, this range of parameters corresponds to smaller values of the damping and nonlinear coefficients. Approximate analytical expressions for the jump-up and jump-down frequencies of the system under investigation are also derived. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper is concerned with a generalization of the Riemann- Stieltjes integral on time scales for deal with some aspects of discontinuous dynamic equations in which Riemann-Stieltjes integral does not works. © 2011 Academic Publications.
Resumo:
This paper presents an investigation into some practical issues that may be present in a real experiment, when trying to validate the theoretical frequency response curve of a two degree-of-freedom nonlinear system consisting of coupled linear and nonlinear oscillators. Some specific features, such as detached resonance curves, have been theoretically predicted in multi degree-of-freedom nonlinear oscillators, when subject to harmonic excitation, and the system parameters have been shown to be fundamental in achieving such features. When based on a simplified model, approximate analytical expression for the frequency response curves may be derived, which may be validated by the numerical solutions. In a real experiment, however, the practical achievability of such features was previously shown to be greatly affected by small disturbances induced by gravity and inertia, which led to some solutions becoming unstable which had been predicted to be stable. In this work a practical system configuration is proposed where such effects are reduced so that the previous limitations are overcome. A virtual experiment is carried out where a detailed multi-body model of the oscillator is assembled and the effects on the system response are investigated.
Resumo:
We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.
Resumo:
The play operator has a fundamental importance in the theory of hysteresis. It was studied in various settings as shown by P. Krejci and Ph. Laurencot in 2002. In that work it was considered the Young integral in the frame of Hilbert spaces. Here we study the play in the frame of the regulated functions (that is: the ones having only discontinuities of the first kind) on a general time scale T (that is: with T being a nonempty closed set of real numbers) with values in a Banach space. We will be showing that the dual space in this case will be defined as the space of operators of bounded semivariation if we consider as the bilinearity pairing the Cauchy-Stieltjes integral on time scales.
Resumo:
We obtain a solution for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SIDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The quantity and distribution of vegetal biomass are important aspects to consider in ecosystem studies. However, little information is available about Brazil's Pantanal woodland savannas. This work involved the development of regression equations of the aerial biomass and wood volume of native tree species in a region of woodland savanna on Rio Negro farm in the Pantanal of Nhecolandia, Brazil. Samples were taken from 10 trees of each of five species: Protium heptaphyllum (Aub1.) Marchand, Magonia pubescens A. St.-Hil., Diptychandra aurantiaca Tul., Terminalia argentea Mart. and Zucc. and Licania minutiflora (Sagot) Fritsch and from a miscellaneous group of I I different species. Linear and nonlinear regression analyses were developed relating the diameter at breast height to the dry weight of wood, branches and leaves, wood volume and total aerial biomass. All the regressions showed a significance of P < 0.05 and an R-2 close to or above 0.8. The biomass curve predicted by linear regression analysis of the studied species was similar to the nonlinear regression, with the exception of L. minutiflora and the miscellaneous group. The breast height diameter proved a good choice for estimating biomass and wood volume. The estimated wood volume and biomass of the Pantanal woodland savanna is crucial information for understanding the carbon cycle and for ensuring the region's conservation and sustainable use. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Some nonlinear differential systems in (2+1) dimensions are characterized by means of asymptotic modules involving two poles and a ring of linear differential operators with scalar coefficients.Rational and soliton-like are exhibited. If these coefficients are rational functions, the formalism leads to nonlinear evolution equations with constraints. © 1989.
Resumo:
We discuss the solutions obtained for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution. © 2005 American Institute of Physics.
Resumo:
The standard way of evaluating residues and some real integrals through the residue theorem (Cauchy's theorem) is well-known and widely applied in many branches of Physics. Herein we present an alternative technique based on the negative dimensional integration method (NDIM) originally developed to handle Feynman integrals. The advantage of this new technique is that we need only to apply Gaussian integration and solve systems of linear algebraic equations, with no need to determine the poles themselves or their residues, as well as obtaining a whole class of results for differing orders of poles simultaneously.