50 resultados para laser model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper is presented a region-based methodology for Digital Elevation Model segmentation obtained from laser scanning data. The methodology is based on two sequential techniques, i.e., a recursive splitting technique using the quad tree structure followed by a region merging technique using the Markov Random Field model. The recursive splitting technique starts splitting the Digital Elevation Model into homogeneous regions. However, due to slight height differences in the Digital Elevation Model, region fragmentation can be relatively high. In order to minimize the fragmentation, a region merging technique based on the Markov Random Field model is applied to the previously segmented data. The resulting regions are firstly structured by using the so-called Region Adjacency Graph. Each node of the Region Adjacency Graph represents a region of the Digital Elevation Model segmented and two nodes have connectivity between them if corresponding regions share a common boundary. Next it is assumed that the random variable related to each node, follows the Markov Random Field model. This hypothesis allows the derivation of the posteriori probability distribution function whose solution is obtained by the Maximum a Posteriori estimation. Regions presenting high probability of similarity are merged. Experiments carried out with laser scanning data showed that the methodology allows to separate the objects in the Digital Elevation Model with a low amount of fragmentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to evaluate effect of bleaching agents on sound enamel (SE) and enamel with early artificial caries lesions (CL) using confocal laser scanning microscopy (CLSM). Eighty blocks (4 × 5 × 5 mm) of bovine enamel were used and half of them were submitted to a pH cycling model to induce CL. Eight experimental groups were obtained from the treatments and mineralization level of the enamel (SE or CL) (n=10). SE groups: G1 - unbleached (control); G2 - 4% hydrogen peroxide (4 HP); G3 - 4 HP containing 0.05% Ca (Ca); G4 - 7.5% hydrogen peroxide (7.5 HP) containing amorphous calcium phosphate (ACP). CL groups: G5 - unbleached; G6 - 4 HP; G7 - 4 HP containing Ca; G8 - 7.5 HP ACP. G2, G3, G6, G7 were treated with the bleaching agents for 8 h/day during 14 days, while G4 and G8 were exposed to the bleaching agents for 30 min twice a day during 14 days. The enamel blocks were stained with 0.1 mM rhodamine B solution and the demineralization was quantified using fluorescence intensity detected by CLSM. Data were analyzed using ANOVA and Fisher's tests (α=0.05). For the SE groups, the bleaching treatments increased significantly the demineralization area when compared with the unbleached group. In the CL groups, no statistically significant difference was observed (p>0.05). The addition of ACP or Ca in the composition of the whitening products did not overcome the effects caused by bleaching treatments on SE and neither was able to promote remineralization of CL.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a method for indirect orientation of aerial images using ground control lines extracted from airborne Laser system (ALS) data. This data integration strategy has shown good potential in the automation of photogrammetric tasks, including the indirect orientation of images. The most important characteristic of the proposed approach is that the exterior orientation parameters (EOP) of a single or multiple images can be automatically computed with a space resection procedure from data derived from different sensors. The suggested method works as follows. Firstly, the straight lines are automatically extracted in the digital aerial image (s) and in the intensity image derived from an ALS data-set (S). Then, correspondence between s and S is automatically determined. A line-based coplanarity model that establishes the relationship between straight lines in the object and in the image space is used to estimate the EOP with the iterated extended Kalman filtering (IEKF). Implementation and testing of the method have employed data from different sensors. Experiments were conducted to assess the proposed method and the results obtained showed that the estimation of the EOP is function of ALS positional accuracy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate commercially pure titanium implant surfaces modified by laser beam (LS) and LS associated with sodium silicate (SS) deposition, and compare them with machined surface (MS) and dual acid-etching surfaces (AS) modified. Topographic characterization was performed by scanning electron microscopy-X-ray energy dispersive spectroscopy (SEM-EDX), and by mean roughness measurement before surgery. Thirty rabbits received 60 implants in their right and left tibias. One implant of each surface in each tibia. The implants were removed by reverse torque for vivo biomechanical analysis at 30, 60, and 90 days postoperative. In addition, the surface of the implants removed at 30 days postoperative was analyzed by SEM-EDX. The topographic characterization showed differences between the analyzed surfaces, and the mean roughness values of LS and SS were statistically higher than AS and MS. At 30 days, values removal torque LS and SS groups showed a statistically significant difference (p < 0.05) when compared with MS and AS. At 60 days, groups LS and SS showed statistically significant difference (p < 0.05) when compared with MS. At 90 days, only group SS presented statistically higher (p < 0.05) in comparison with MS. The authors can conclude that physical chemistry properties and topographical of LS and SS implants increases bone-implant interaction and provides higher degree of osseointegration when compared with MS and AS. © 2012 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the influence of bone marrow aspirate (BMA), low-level laser therapy (LLLT) and their combination on bone healing in surgically created critical-size defects (CSDs) in rat calvaria. 40 rats were divided into four groups: C (control), BMA, LLLT and BMA/LLLT. A 5 mm diameter CSD was created in the calvarium of each animal. In Group C, the defect was filled by blood clot only. In Group BMA, the defect was filled with BMA. In groups LLLT and BMA/LLLT, the defect received laser irradiation (InGaAlP laser), was filled with blood clot or BMA respectively, and irradiated again. Animals were euthanized 30 days postoperatively. Histomorphometric and immunohistochemical analyses were performed. Newly formed bone area (NFBA) was calculated as percentage of the total area of the original defect. Proliferating cell nuclear antigen (PCNA), runt-related transcription factor 2 (Runx2) and osteocalcin (OCN) immunohistochemical staining were performed. PCNA-positive, Runx2-positive and OCN-positive cells were quantified. Data were statistically analyzed. Group BMA/LLLT had significantly greater NFBA than groups C, BMA or LLLT. Group BMA presented significantly greater NFBA than control, while group LLLT did not. Group BMA/LLLT presented a significantly higher number of PCNA-positive and OCN-positive cells than any of the other groups. Groups BMA/LLLT and BMA showed a significantly lower number of Runx2-positive cells than groups C or LLLT. The combination of BMA/LLLT yielded significantly greater bone formation in surgically created CSD in rat calvaria when compared to control, or either treatment alone. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a photogrammetric method is proposed for refining 3D building roof contours extracted from airborne laser scanning data. It is assumed that laser-derived planar faces of roofs are potentially accurate, while laser-derived building roof contours are not well defined. First, polygons representing building roof contours are extracted from a high-resolution aerial image. In the sequence, straight-line segments delimitating each building roof polygon are projected onto the corresponding laser-derived roof planes by using a new line-based photogrammetric model. Finally, refined 3D building roof contours are reconstructed by connecting every pair of photogrammetrically- projected adjacent straight lines. The obtained results showed that the proposed approach worked properly, meaning that the integration of image data and laser scanning data allows better results to be obtained, when compared to the results generated by using only laser scanning data. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An indirect method for the georeferencing of 3D point clouds obtained with terrestrial laser scanning (TLS) data using control lines is presented. This technique could be used for rapid data acquisition where resources do not permit the use of expensive navigation sensors or the placement of pre-signalised targets. The most important characteristic is the development of a mathematical model based on the principle that the direction vector of the TLS straight line is coplanar with the plane defined by the origin of the TLS system, one endpoint of a control line and the direction vector of the control line in the ground reference coordinate system. The transformation parameters are estimated by minimising the distance between the control lines and their corresponding TLS straight lines. The proposed method was tested using both simulated and real data, and the advantages of this new approach are compared with conventional surveying methods. © 2013 This article is a U.S. Government work and is in the public domain in the USA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciências Cartográficas - FCT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SUM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SUM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SUM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the formation of molecules under the action of external field acting during the atomic collision. To describe this process, the collision of atomic pairs, we use the Morse oscillator model driven The study was developed from the standpoint of classical mechanics by analyzing the sensitivity of the system with respect to initial conditions, the verification of chaotic dynamics associated with the process of formation of molecules with laser and analysis of system dynamics and the likelihood of photoassociation in response to the external field parameters

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)