135 resultados para lanthanides and yttrium
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Solid-state compounds of general formula LnL3.nH2O, in wich Ln represents lanthanum, lanthanides and yttrium, L is ketoprofen, and n = 0,5 (Pr, Sm, Tb), 1 (La, Eu, Dy, Ho, Er, Tm, Lu) e 1,5 (Ce, Nd, Gd, Yb, Y) were synthesized. Simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and EDTA complexometry were employed to characterize these compounds. The TG-DTA and DSC curves provided information concerning the thermal behaviour and thermal decomposition of synthesized compounds. The experimental and theoretical infrared spectroscopic data suggested that ketoprofen acts as a bidentate ligand towards trivalent lanthanides and yttrium (III)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Solid-state Ln(Bz)(3)center dot H(2)O compounds where Ln stands for trivalent yttrium or lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), X-ray powder diffractometry, infrared spectroscopy and chemical analysis were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
Solid-state compounds Ln-4Cl-BP, where Ln represents lighter trivalent lanthanides and 4Cl-BP is 4-chlorobenzylidenepyruvate, were prepared. Thermogravimetry, derivative thermogravimetry (TG and DTG), differential scanning calorimetry (DSC) and other methods of analysis were used to characterize and to study the thermal behaviour of these compounds.
Resumo:
Solid-state Ln-L compounds, where Ln stands for heavy trivalent lanthanides or yttrium(III) (Tb-Lu, Y) and L is succinate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy, TG-DTA coupled to FTIR, elemental analysis, X-ray powder diffractometry and complexometry were used to characterize and study the thermal behavior of these compounds. For the terbium to thulium and yttrium compounds, the dehydration, as well the thermal decomposition of the anhydrous compound occurs in two consecutive steps, while ytterbium and lutetium the dehydration occurs in a single step. The results also led to information about the ligand's denticity, thermal stability and thermal decomposition of these compounds. © 2013 Elsevier B.V.
Resumo:
A previous communication [1] described the preparation of the double selenates of lanthanum and the alkali metals; the La-Li compound has the formula La2(SeO4)3 · Li2SeO4 · 8H2O. Subsequent reports [2-4] have shown that it was not possible to prepare the Ce-Li, Pr-Li, Nd-Li and Sm-Li double selenates, using the same method [1]. It was possible to isolate the double selenates of all the cerie group lanthanides and lithium not previously described and, also, a La-Li double selenate having a different stoichiometry, using a modified preparation technique. © 1990.
Resumo:
Luminescent properties of scandium and yttrium phosphates are discussed and mechanisms involving their emissions proposed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Purpose: To evaluate the effects of two surface treatments, aging, and two resin cements on shear bond strength between dentin and yttrium-stabilized tetragonal zirconia polycrystal ceramic (Y-TZP).Materials and Methods: Eighty human molars were embedded in acrylic resin and sectioned 3 mm below the occlusal plane. These teeth and 80 cylindrical Y-TZP specimens (height, 4 mm; diameter, 3.4 mm) were divided into eight groups (n=10) using the following factors: Y-TZP surface treatment (Vi: low-fusing porcelain [vitrification] + hydrofluoric acid etching + silanization or Si: tribochemical silicatization); cementation strategies (PF: Pan avia or CC: Clearfil); and storage (nonaging or aging). Bonding surfaces of 40 Y-TZP specimens received Vi treatment, and the rest received Si treatment. Half of the ceramic-tooth assemblies were cemented with Panavia, the rest with Clearfil. Shear tests were executed using 0.4-mm-thick wire at 0.5 mm/min. Data were analyzed by three-way analysis of variance and Tukey test (alpha=0.05). Fractures were analyzed.Results: Y-TZP surface treatments did not affect bond strength (p=0.762, Vi = Si), while resin cements (p<0.001, Panavia > Clearfil) and aging (p=0.006, nonaging > aging) showed a significant effect. Most failures were in adhesive at dentin-cement interfaces; no failure occurred between zirconia and cement.Conclusion: When Y-TZP ceramic is bonded to dentin, the weakest interface is that between dentin and resin cement. The resin cement/Y-TZP interface was less susceptible to failures, owing to Y-TZP surface treatments.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Yttrium-aluminum oxides are interesting compounds and they have been extensively used as host for lasers and phosphors, due to their stable physical and chemical properties. The fabrication of yttrium-aluminum garnet (YAG) has been investigated thoroughly. Single-crystal YAG is expensive and to produce it a new way has been investigated. This process consists of modifying the methodology of reagents mixture and the process of heating them. The microwave irradiation is used to heat-treat the oxide mixture. The traditional synthesis of YAG powders occurs through the reaction of aluminum and yttrium powders at high temperatures. With this work we investigated the preparation of YAG by non-hydrolytic sol-gel route as an alternative methodology to obtain yttrium-aluminum matrix from inorganic precursors (yttrium and aluminum chloride). The preparation of the gel was carried out in an oven-dried glassware. The AlCl3, YCl3 and ethanol were reacted in reflux under argon atmosphere. Europium III chloride was added as a structural probe. The powder was dried and heat-treated in modified microwaves. The samples were pre-treated at 50 and 800 C during I h and then heated in microwaves for 30 s, 2 and 4 min. The formation process and structure of the powders were studied by means of X-ray diffraction (XRD), photoluminescence (PL) and transmission electronic microscopy (TEM). XRD presents only picks corresponding to the YAG phase and confirmed by TEM. PL date showed that the YAG phase was formed in 2 min with the samples pre-treated at 50 C. For the samples pretreated at 800 degrees C, the YAG phase appears in 30s. The excitation spectra present a maximum of 394 nm corresponding to the L-5(6) level and emission spectra of Eu III ion present bands characteristic transitions arising from the D-5(0) -> F-7(J) (J= 1, 2, 3, 4) monifolds excited at their maximum. The magnetic dipole D-5(0) -> F-7(1) transition presents more intensity than the electric dipole D-5(0) -> F-7(2) transition. This methodology showed efficiency in obtaining YAG phase. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)