118 resultados para ion implantation and irradiation
Resumo:
Thin films were prepared by plasma enhanced chemical vapour deposition (PECVD) from a mixture of acetylene and argon, and post deposition-treated by plasma immersion ion implantation (PIII). The effect of PIII on the nanofilms properties was evaluated as a function of treatment time. The average thickness and roughness were diminished upon PIII. On the other hand, hardness (0.7-3.9 GPa) and elastic modulus (29-54 GPa) increased upon 60 min of ion bombardment. Such results are ascribed mainly to the densification of the film structure caused by the increment in the crosslinking degree with increasing the energy deposited in the films. Wettability of the samples, investigated by contact angle measurements, was reduced (from 64 to 21°) right after PIII. This result, attributed to the introduction of polar groups in the film structure, was not preserved as the sample was aged in atmosphere. After aging, contact angles were larger than 70° but still smaller than 90°. Although the wettability has decreased with aging, the hydrophilic character of the samples was preserved. For certain treatment times, nitrogen PIII turned the plasma-polymerized acetylene films smoother, denser, mechanically and tribologicaly more resistant than the as-deposited material. © 2013 Elsevier B.V.
Resumo:
Although titanium and its alloys own good mechanical properties and excellent corrosion resistance, these materials present poor tribological properties for specific applications that require wear resistance. In order to produce wear-resistant surfaces, this work is aimed at achieving improvement of wear characteristics in Ti-Si-B alloys by means of high temperature nitrogen plasma immersion ion implantation (PIII). These alloys were produced by powder metallurgy using high energy ball milling and hot pressing. Scanning electron microscopy (SEM) and X-ray diffraction identified the presence of α-titanium, Ti6Si2B, Ti5Si3, TiB and Ti3Si phases. Wear tests were carried out with a ball-on-disk tribometer to evaluate the friction coefficient and wear rate in treated and untreated samples. The worn profiles were measured by visible light microscopy and examined by SEM in order to determine the wear rates and wear mechanisms. Ti-7.5Si-22.5B alloy presented the highest wear resistance amongst the untreated alloys produced in this work. High temperature PIII was effective to reduce the wear rate and friction coefficient of all the Ti-Si-B sintered alloys. © 2013 Elsevier B.V.
Resumo:
A comparison between experimental measurements and numerical calculations of the ion current distribution in plasma immersion ion implantation (PIII) with external magnetic field is presented. Later, Silicon samples were implanted with nitrogen ion to analyze the effect on them. The magnetic field considered is essentially non-uniform and is generated by two magnetic coils installed on vacuum chamber. The presence of both, electric and magnetic field in PIII create a crossed ExB field system, promoting drift velocity of the plasma around the target. The results found shows that magnetized electrons drifting in ExB field provide electron-neutral collision. The efficient ionization increases the plasma density around the target where a magnetic confinement is formed. As result, the ion current density increases, promoting significant changes in the samples surface properties, especially in the surface wettability.
Resumo:
Introduction: An experimental mineral trioxide aggregate sealer (MTAS) has been developed for use as a root canal sealer. The aim of this study was to evaluate the setting time, pH, and calcium ion release of MTAS compared with white Portland cement (CPB-40; Votorantin Cimentos, Camargo Correa SA, Pedro Leopoldo, MG, Brazil), white MTA Angelus (MTA; Angelus, Londrina, PR, Brazil), and AH Plus (Dentsply DeTrey, Konstanz, Germany). Methods: For the evaluation of setting time, each material was analyzed using Gilmore-type needles. Polyethylene tubes with the materials were immersed in distilled water for the measurement of pH (digital pH meter) and calcium release (atomic absorption spectrophotometry). The evaluations were performed at 3, 6, 12, 24, and 48 hours and 7, 14, and 28 days. Data were analyzed by analysis of variance and the Tukey test at 5% significance level. Results: MTAS showed higher calcium release at all experimental periods, a greater increase in pH up to 48 hours and the longest setting time. Conclusions: MTAS presented favorable properties for its indication as a root canal sealer. (J Endod 2011;37:844-846)
Resumo:
Sphingomyelinases D (SMases D) from Loxosceles spider venom are the principal toxins responsible for the manifestation of dermonecrosis, intravascular hemolysis, and acute renal failure, which can result in death. These enzymes catalyze the hydrolysis of sphingomyelin, resulting in the formation of ceramide 1-phosphate and choline or the hydrolysis of lysophosphatidyl choline, generating the lipid mediator lysophosphatidic acid. This report represents the first crystal structure of a member of the sphingomyelinase D family from Loxosceles laeta (SMase I), which has been determined at 1.75-angstrom resolution using the quick cryo-soaking technique and phases obtained from a single iodine derivative and data collected from a conventional rotating anode x-ray source. SMase I folds as an (alpha/beta)(8) barrel, the interfacial and catalytic sites encompass hydrophobic loops and a negatively charged surface. Substrate binding and/or the transition state are stabilized by a Mg2+ ion, which is coordinated by Glu(32), Asp(34), Asp(91), and solvent molecules. In the proposed acid base catalytic mechanism, His(12) and His(47) play key roles and are supported by a network of hydrogen bonds between Asp(34), Asp(52), Trp(230), Asp(233), and Asn(252).
Resumo:
To estimate realistic cross sections in ultra peripheral heavy ion collisions we must remove effects of strong absorption. One method to eliminate these effects make use of a Glauber model calculation, where the nucleon-nucleon energy dependent cross sections at small impact parameter are suppressed. In another method we impose a geometrical cut on the minimal impact parameter of the nuclear collision ((b)min > R-1 + R-2, where R-i is the radius of ion 'i'). In this last case the effect of a possible nuclear radius dependence with the energy has not been considered in detail up to now. Here we introduce this effect showing that for final states with small invariant mass the effect is negligible. However when the final state has a relatively large invariant mass, e.g., an intermediate mass Higgs boson, the cross section can decrease up to 50%. (C) 2003 Published by Elsevier B.V.
Resumo:
The combined CERN and Brookhaven heavy ion (H.I.) data supports a scenario of hadron gas which is in chemical and thermal equilibrium at a temperature T of about 140 MeV. Using the Brown-Stachel-Welke model (which gives 150 MeV) we show that in this scenario, the hot nucleons have mass 3 pi T and the pi and rho mesons have masses close to pi T and 2 pi T, respectively. A simple model with pions and quarks supports the co-existence of two phases in these heavy ion experiments, suggesting a second order phase transition. The masses of the pion, rho and the nucleon are intriguingly close to the lattice screening masses.
Resumo:
The calcium hydroxide ionization of four root canal sealers (Sealapex, CRCS, Sealer 26, and Apexit) was studied by measuring conductivity and pH and by conducting atomic absorption spectrophotometry. Samples 6 mm in diameter and 15 mm long were prepared from these sealers. After setting and 48 h storage in a desiccator, five samples of each material were placed in 50 mL distilled water and analysed after 0,1,2,4, 6 and 24 h and 5, 15 and 30 days. The results showed that Sealapex was the root canal sealer showing the highest pH, ionic calcium and total calcium values (P<0.05) throughout the experimental period, followed by CRCS, Apexit and Sealer 26.
Resumo:
A flow-injection system with a Chelite-S® cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl2, in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury, to the flow cell in the forward direction or removes the residue from reactor/gas liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h-1 (50.0 500 ng l-1), consuming about 10 ml sample and 5 mg SnCl2 per determination. The detection limit is 0.8 ng l-1 and the relative standard deviation (RSD) (n = 12) of a 76.7 ng l-1 sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found. (C) 2000 Elsevier Science B.V.
Resumo:
The influence of endometrial cavity length (ECL) on implantation and pregnancy rates after 400 embryo transfers was studied prospectively in a population with the indication of IVF/intracytoplasmic sperm injection (ICSI). The tip of the transfer catheter was placed above or below the half point of the ECL in a randomized manner. Two analyses were performed: (i) absolute position (AP); embryo transfers were divided into three groups according to the distance between the end of the fundal endometrial surface and the catheter tip (DTC - distance tip catheter): AP 1 (n = 212), 10-15 mm; AP 2 (n = 158), 16-20 mm; and AP 3 (n = 30), ≥21 mm. (ii) relative position (RP) - embryo transfers were divided into four groups according to their RP [RP = (DTC/ECL) × 100]: RP 1 (n = 23), ≤40%; RP 2 (n = 177), 41-50%; RP 3 (n = 117), 51-60%; and RP 4 (n = 83), ≥61%. Analysis based on relative distance revealed significantly higher implantation and pregnancy rates (P < 0.05) in more central areas of the ECL. However, analysis based on absolute position did not reveal any difference. In conclusion, the present results demonstrated that implantation and pregnancy rates are influenced by the site of embryo transfer, with better results being obtained when the catheter tip is positioned close to the middle area of the endometrial cavity. In this respect, previous analysis of the ECL is the fundamental step in establishing the ideal site for embryo transfers.
Resumo:
An a-C:H thin film deposited by plasma immersion ion implantation and deposition on alloy steel (16MnCr5) was analyzed using a self-consistent ion beam analysis technique.In the self-consistent analysis, the results of each individual technique are combined in a unique model, increasing confidence and reducing simulation errors.Self-consistent analysis, then, is able to improve the regular ion beam analysis since several analyses commonly used to process ion beam data still rely on handling each spectrum independently.The sample was analyzed by particle-induced x-ray emission (for trace elements), elastic backscattering spectrometry (for carbon), forward recoil spectrometry (for hydrogen) and Rutherford backscattering spectrometry (for film morphology).The self-consistent analysis provided reliable chemical information about the film, despite its heavy substrate.As a result, we could determine precisely the H/C ratio, contaminant concentration and some morphological characteristics of the film, such as roughness and discontinuities.© 2013 Elsevier B.V.All rights reserved.
Resumo:
Amorphous silicon carbonitride (a-SiCN:H) films were synthesized by radiofrequency (RF) Plasma Enhanced Vapor Chemical Deposition (PECVD) using hexamethyldisilazane (HMDSN) as precursor compound. Then, the films were post-treated by Plasma Immersion Ion Implantation (PIII) in argon atmosphere from 15 to 60 min The hardness of the film enhanced after ion implantation, and the sample treated at 45 min process showed hardness greater than sixfold that of the untreated sample. This result is explained by the crosslinking and densification of the structure Films were exposed to oxygen plasma for determining of the etching rate. It decreased monotonically from 33 angstrom/min to 19 angstrom/min for the range of process time, confirming structural alterations. Hydrophobic character of the a-SiCN:H films were modified immediately after ion bombardment, due to incorporation of polar groups. However, the high wettability of the films acquired by the ion implantation was diminished after aging in air. Therefore, argon PIII made a-SiCN.H films mechanically more resistant and altered their hydrophobic character.
Resumo:
Purpose: To evaluate the effect of the addition of sodium trimetaphosphate (TMP) with or without fluoride on enamel demineralization, and the hardness and release of fluoride and TMP of resin composites. Methods: Bovine enamel slabs (4x3x3 mm) were prepared and selected based on initial surface hardness (n= 96). Eight experimental resin composites were formulated, according to the combination of TMP and sodium fluoride (NaF): TMP/NaF-free (control), 1.6% sodium fluoride (NaF), and 1.5%, 14.1% and 36.8% TMP with and without 1.6% NaF. Resin composite specimens (n= 24) were attached to the enamel slabs with wax and the sets were subjected to pH cycling. Next, surface and cross-sectional hardness and fluoride content of enamel as well as fluoride and TNT release and hardness of the materials were evaluated. Data were statistically analyzed using ANOVA (P< 0.05). Results: The presence of fluoride in enamel was similar in fluoridated resin composites (P> 0.05), but higher than in the other materials (P< 0.05). The combination of 14.1% TMP and fluoride resulted in less demineralization, especially on lesion surface (P< 0.05). The presence of TMP increased fluoride release from the materials and reduced their hardness.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)