47 resultados para inner circulating fluidized bed


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluidization consists in a bed of solid particles acquire fluid behavior by using a fluid (in this case air) flowing through the solid particles. Because of this, it can be a good mix of these materials, as well as to show increased rates of heat and mass transport. The fluid flowing through the spaces between the particles gives an interstitial velocity, that if is too low does not cause movement of the particulates. The gradual increase in speed will generate small vibrations between the particles promotes its fluidization. Our study focus in the fluid state of solid bed , when the fluid velocity reaches a state where the drag forces are sufficient to support the weight of the solid particles making these solids behave like fluids . Knowledge of the minimum velocity required to fluidize that particles is of great importance since below this speed there is no fluidization, and far above it, the solids are carried out of the bed. The fluidized bed reactor is widely used in physics and engineering, particularly in gas-solid fluidization, with emphasis on thermochemical processes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Essential oils are products from plants and can be located in parts or in its entirety. There are several methods for its extraction, where the most suitable depends on the plant or the use of the essence. The main species cultivated in Brazil are the Corymbia citriodora, Eucalyptus globulus and Eucalyptus staigeriana. The Corymbia citriodora is a species that was introduced in Brazil along with other species, with the initial objective of timber production. The yield of oil can range from 0.5 % to 3.0% according to the literature and this can be optimized by reducing the moisture content of the leaves. Studies show that the lower water content in the leaves allows the vapor stream generated in the extractor can drag, more efficiently, the volatiles stored in the cells as compared with the green material. The drying of the sheets is important for companies, so that there is transport of water, increasing the volume of the sheets to distillation and hence a greater volume of oil. The objective of this study was to compare the drying methods, analyzing the income of the essence and determine the best method to optimize the yield of essential oil. Experimental tests were performed natural drying 10, 15 and 20 days and fluidized with times of 60, 90 and 120 minutes and after drying were extractions of the oil. The results obtained for fresh leave yield was 1.20 % and the drying time which showed the highest yield was 15 and 20 days with 2.90 % and 2.70 % yield, respectively, with the lowest level humidity of 16%. The yields obtained in fluidized bed drying did not change as the natural drying to between 1.64% and 1.7%. It is concluded that the decreased level of the sheets increases the yield of oil and the temperature in the fluidized bed is essential for the removal of water from the leaves necessary to increase the yield

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brazil has one of the largest cattle herds in the world, so the cattle slaughter is one of the most important economic activities in the Brazilian market. But this activity requires a high demand of water, resulting in serious problems about the correct disposal of wastewater generated in the process. This effluent has a high pollution load, becoming its receiving bodies (streams and rivers) unfit for various activities such as public water supply, recreation, fisheries. To minimize the environmental impacts of its industrial wastewater and fallow the local environmental legislation, refrigerators must make the treatment of these effluents. This study aimed to verify the efficiency of a enzymatic reactor, when occur hydrolysis of lipids present in the effluent industrial of an cattle slaughter industry. The treatment system used was composed of two separate reactors: one being the anaerobic fluidized bed reactor (AFBR), inoculated with immobilized enzymes on the matrix support, and the other by sequential batch reactor (SBR) inoculated with activated sludge. Whereas, the reactors have been developed and installed at the Wastewater Treatment Laboratory, Faculdade de Ciências e Tecnologia, UNESP, campus Presidente Prudente. The procedure operating occurred differently for each reactor: preparation and inoculation of enzyme granules, filling the reactor, hydrolysis, and AFBR emptying, filling, aerobic reaction, sedimentation, and emptying the SBR. We performed three experimental stages, with the first and second stage of the work were done reactor analyzes separately, and the third step of the analysis were made with the interconnected reactors... (Complete abstract electronic access below)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to develop, implement and evaluate the performance of a new type of bioreactor for anaerobic treatment of wastewater using different filling materials like trickling filters post-reactor. This bioreactor has mixed characteristics of the UASB reactors and horizontal flow from the point of view of removal of BOD (Biochemical Oxygen Demand) ssed (settled solids), TS (Total Solids), SS (Suspended Solid), SD (Dissolved Solids) and turbidity. The experimental model consists of a bioreactor with a volume of 12 m³, 2/3 filled by fluidized bed and 1/3 for fixed. The fluidized bed is made of polystyrene plates used as a system percolation and compartmentalized trickling filters, where each compartment was filled with a support medium with different characteristics (gravel number 4, plastic rings of polystyrene, PET and HDPE) . In addition, the output of a filter system was installed three entries filled with activated carbon. The bioreactor was installed in private residence in the city of Igarapava-SP (20° 02'40.18"S and 47° 45'01.36" W). The system was highly efficient as the removal of organic contaminant load 92% on average reducing the BOD, a significant result when compared to other anaerobic systems. For the other parameters, the mean reduction was 96% for turbidity, 99% ssed, 67.5% ST, 57% SD and 88% of SS. As for its operation the system was capable of operating in continuous flow without the need for maintenance during the entire period of evaluation and without energy, as it operates taking advantage of the natural slope of the terrain where it is installed. The environmental impacts were minimized due to the preservation of local vegetation allowing the ecosystem to remain unchanged beyond the prototype was completely sealed preventing exhalation of odors and therefore not causing inconvenience to neighboring populations. Given these facts it was concluded that the prototype is shown to be highly feasible deployed as a new alternative for treatment of sewage in rural and urban settings (individual homes, condos, farms, ranches, etc.) Due to ease of design and operability, and sustainability at all stages of execution.