35 resultados para implicit relations of spatial neighborhood
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Climatic factors directly influence growth and productivity of plants inside greenhouses, where temperature can be considered one of the major parameter in this context. Thus, the aim of this research was to develop a low cost device for thermal sensing and data acquisition, and use it in data collection and analysis of spatial variability of temperature inside a greenhouse with tropical climate. The developed equipment for thermal measurements showed a high degree of accuracy and fast responses in measurements, proving its efficiency. The data analysis interpretations were made from the elaborations of variograms and of tridimensional maps generated by a geostatistical software. The processed data analysis presented that a greenhouse without thermal control has spatial variations of air temperature, both in the sampled horizontals layers as in the three analyzed vertical columns, presenting variations of up to 3.6 ºC in certain times.
Resumo:
The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.