155 resultados para immature embryo
Resumo:
Mammalian oocytes can undergo spontaneous meiotic maturation when they are liberated from their follicles and cultured in vitro; however, the zona pellucida (ZP) becomes resistant to chymotrypsin digestion, or hardens, when spontaneous maturation occurs in serum-free medium. Schroeder et al. [Biol. Reprod. 43 (1990) 891] described that fetuin, a component of fetal calf serum (FCS), inhibits ZP hardening during oocyte maturation. The aim of this experiment was to study the effect of the presence of cumulus cells and addition of hormones to maturation media on bovine zona hardening and embryo development in medium with and without fetuin. In Experiment 1, different concentrations of fetuin were added to the maturation medium. The time necessary for digestion of 50% of the ZP (d50) was not different when oocytes were matured in presence of 10% FCS, 1 mg/ml polyvinyl alcohol (PVA), or 4, 1 and 0.25 mg/ml of fetuin; cleavage rates were also similar. However, significantly more blastocysts (P < 0.05) were formed when FCS was used compared to PVA and 0.25 mg/ml of fetuin. In Experiment 11, we examined the influence of the presence of cumulus cells and hormones during the maturation of oocytes in media with PVA, BSA, FCS and fetuin. The d50 was significantly higher (P < 0.05) when oocytes were matured in presence of cumulus cells. The cleavage rate of cumulus-intact oocytes was similar for all groups. However, when oocytes were partially stripped before maturation, the cleavage rate was significantly higher (P < 0.05) when FCS or fetuin was used. In both stripped and non-stripped groups, significantly more blastocysts (P < 0.05) were formed when oocytes were matured with FCS compared to BSA and PVA. These results indicate that zona hardening, as described for mouse and human oocytes, does not have a large effect on bovine cumulus-intact oocytes. Apparently fetuin can be used as a substitute for FCS during bovine oocyte maturation, since it leads to similar developmental rates as FCS in intact and partially stripped oocytes. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
Equine pituitary extract (EPE), has been reported to induce multiple ovulation in mares, however ovulation rates are poor in comparison to those obtained in other species. Attempts to improve the effectiveness of EPE for induction of superovulation in cyclic mares has focused on daily frequency of EPE treatment. Two experiments were performed to compare the ovarian response of cyclic mares given EPE once or twice-daily. Mares were assigned to one of two treatment groups 6 to 8 days after ovulation: prostaglandin was given once and EPE (25 mg) was given once daily (Group 1) or twice daily (Group 2). In Experiment 1, more (P < 0.05) follicles
Resumo:
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size ( : 35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatoiy follicle (4.1 +/- 1.0 vs 14.9 +/- 10.8 days) and ovulated before untreated mares (6.6 +/- 1.2 vs 18.0 +/- 11.1 days; P <.05). All mares were treated with prostaglandin F-2 alpha (PGF(2 alpha)), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF(2 alpha), treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.
Resumo:
Data on fertilisation and embryo quality in dairy cattle are presented and the main factors responsible for the low fertility of single-ovulating lactating cows and embryo yield in superovulated dairy cattle are highlighted. During the past 50 years, the fertility in high-producing lactating dairy cattle has decreased as milk production increased. Recent data show conception rates to first service to be approximately 32% in lactating cows, whereas in heifers it has remained above 50%. Fertilisation does not seem to be the principal factor responsible for the low fertility in single-ovulating cows, because it has remained above 80%. Conversely, early embryonic development is impaired in high-producing dairy cows, as observed by most embryonic losses occurring during the first week after fertilisation. However, in superovulated dairy cattle, although fertilisation failure is more pronounced, averaging approximately 45%, the percentage of fertilised embryos viable at 1 week is quite high (>70%). Among the multifactorial causes of low fertility in lactating dairy cows, high feed intake associated with low concentrations of circulating steroids may contribute substantially to reduced embryo quality. Fertilisation failure in superovulated cattle may be a consequence of inappropriate gamete transport due to hormonal imbalances.
Resumo:
This study examined the effect of treating mares with equine pituitary extract (EPE) alone or in combination with hCG on the recovery rate of immature follicles by transvaginal follicular aspiration (ovum pick-up; OPU). Ten normally cycling crossbred mares aged 3-15 years and weighing 350-400 kg were subjected to each of three treatments in a random sequence with each exposure to a new treatment separated by a rest cycle during which a spontaneous ovulation occurred. The treatments were (1) superovulated with 25 mg EPE and treated with 2500 IU hCG, (2) superovulation with 25 mg EPE, and (3) control (no exogenous treatment). Treatments 7 days after spontaneous ovulation; and all the follicles > 10 mm were aspirated 24 h after the largest follicle achieved a diameter of 27-30 mm for control group, and most follicles reached 22-27 mm for the EPE alone treatment. To the group EPE+hCG, when the follicles reached 22-27 mm, hCG was administered, 24 h before OPU. Superovulation increased the number of follicles available for aspiration. The total number of follicles available for aspiration was 61 in the EPE/hCG group. 63 in the EPE group and 42 in the control. The proportion of follicles aspirated varied from 63.5% to 73.8%. Oocyte recovery rate ranged from 15.0% to 16.7% and the proportion of mares that yielded at least one oocyte was 70% (7/10) in the EPE/hCG, 60% (6/10) in the EPE alone and 50% (5/10) in control group. The EPE/hCG treatment had a higher proportion of follicles with expanded granulose cells (64.4%) than the control (3.3%: p < 0.05) and the EPE treatment (25.0%). The intervals from spontaneous ovulation to aspiration were similar for all treatments (11-12 days). However, superovulatory treatment significantly increased the aspiration to ovulation interval from 15 +/- 4 days for control to 27 +/- 15 days for EPE (p < 0.05) and to 23 +/- 13 days for EPE/hCG treatment with commensurate increases in the time between spontaneous ovulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study was designed to compare embryo recovery rates and pregnancy rates of athletic and breeding Quarter Horse mares in a tropical warm climate. Thirty-nine barrel racing mares in training and 135 breeding mares as control donors were included. During the training period, the ambient temperature ranged from 31 degrees C to 36 degrees C and the average humidity from 70% to 90%. After the detection of a 35-mm follicle by ultrasound, ovulation was induced with 1 mg of deslorelin acetate (i.m), and insemination was performed 24 hours later with cooled and fresh semen from different fertile stallions. Embryos were collected on day 8 postovulation. The body temperature (rectal) was evaluated from eight athletic donor mares randomly selected from the same studied group. A total of 138 and 657 embryo collections were carried out on training and breeding mares, respectively, with a total of 105 (76%) and 466 (71%) embryos collected (P > .05). Similarly, no differences (P > .05) were observed for the pregnancy rates on day 15 (82/105, 78% vs. 370/466,79%), and day 40 (73/105, 69% vs. 328/466,70%) between the training and breeding donor mares. Just after training, the body temperature increased to an average of 39.4 degrees C and the respiratory rate from 14.5 to 35.3 breaths per minute. The results of the present study showed that embryo production from appropriately trained donor mares in good condition were similar to non-athletic broodmares. (C) 2011 Published by Elsevier B.V.