222 resultados para honey bee
Resumo:
A ocorrência da doença apícola cria giz, em colônias de abelhas Apis mellifera no apiário do Departamento de Zootecnia da Universidade Federal de Santa Maria (UFSM), RS, Brasil, foi constatada em 2004. Foram coletadas amostras de crias de abelhas duras e mumificadas em favos falhados nas colônias com pequena população. Essas amostras foram analisadas no Laboratório de Fitopatologia do Departamento de Defesa Fitossanitária da UFSM, onde se observou a presença de estruturas fúngicas com formação típica do fungo Ascosphaera apis, conhecido como causador da doença cria giz. Até então não existiam notificações da presença dessa doença na região central do Estado do Rio Grande do Sul, o que pode caracterizar um avanço dessa enfermidade para o interior, a partir de regiões próximas à fronteira com o Uruguai e a Argentina.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Venom of the honey bee Apis mellifera induced a protective effect against the induction of dicentric chromosomes by gamma radiation (2.0 Gy) in human peripheral blood lymphocytes which the cultures were treated with 0.00015 mul venom/1 ml medium 6 h before irradiation. In cultures to which the venom was added immediately before irradiation with 0.25, 1.0 and 2.0 Gy, no significant differences in number of dicentric chromosomes induced was observed when compared to cultures submitted to irradiation only. The venom did not induce clastogenic effects nor did it increase the frequency of sister chromatid exchanges.
Resumo:
Midgut cells from the honey bee, Apis mellifera, and the stingless bees Scaptotrigona postica and Melipona quadrifasciata anthidioides were examined ultrastructurally and histochemically. Several types of protrusions were evident in the apical surface of the midgut cells. Large apical protrusions formed by the whole apical surface of the cell, whose content had a homogeneous cytoplasmic matrix devoid of organelles and with a different electron density from the subjacent cytoplasm. These protrusions can be cast out to the midgut lumen. A second type of large apical protrusion was produced between the cell microvilli, presenting many ribosomes and polyribosomes. In addition to these large protrusions two other kinds of small ones were observed. One type crowned the cell apex forming small spheres with irregular contours near the cells, and increasing in size further away. The other type was characterized by the microvilli swelling with an electron-lucent content. The Gomori acid phosphatase reaction was positive at the cell apex, in the pinched off protrusions and in the microvilli. These results are discussed in relation to the possible role of cell protrusions in secretory mechanisms.
Resumo:
Split sting is the name given to a nonfunctional honey bee sting characterized by lancets not attached to the stylet. It has appeared in a mutant line in Brazil, and has provoked interest as a possible means to reduce honey bee colony defensiveness. We induced this alteration in Africanized Apis mellifera L. workers and queens by maintaining pupae at 20 degrees C. In particular, we determined the pupal phase most susceptible to alterations in the sting caused by cold treatment, and we investigated whether this treatment also affected survival to the adult phase and wing morphology. The highest frequency of split sting was detected in workers treated at the pink-eyed pupal phase. The lowest frequency was observed in the bees treated at the oldest worker pupal phase studied (brown-eyed pupae with lightly pigmented cuticle). Both queen pupal phases tested (white and pink-eyed pupae) were equally sensitive and produced high percentages of adults with split sting. However, the 20 degrees C treatment of workers and queens, at the different pupal phases, resulted in high frequencies of adults with deformed wings. Also, fewer workers and queens treated at the earlier pupal stages reached adult emergence. There was also an arrest in developmental time, corresponding to the period of cold treatment.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Apis mellifera bee venom (Africanized honey bee) was tested for the ability to protect against the lethal effect of bleomycin, an antibiotic and antineoplastic agent. Since the radioprotective effect of the venom has been observed on the other biological systems, in the present study the venom was applied to cultures of enterobacteria treated with bleomycin, a radiomimetic agent. The venom did not act as a protective agent against bleomycin in E. coli, S. typhimurium or Y. enterocolitica.
Resumo:
We report nuclear acid phosphatase activity in the somatic (intra-ovariolar and stromatic) and germ cells of differentiating honey bee worker ovaries, as well as in the midgut cells of metamorphosing bees. There was heterogeneity in the intensity and distribution of electron dense deposits of lead phosphate, indicative of acid phosphatase activity in the nuclei of these tissues, during different phases of post-embryonic bee development. This heterogeneity was interpreted as a variation of the nuclear functional state, related to the cell functions in these tissues.
Resumo:
This paper describes the ultramorphology and histology of the venom reservoir in 14-day old workers of Apis mellifera, immediately before and after the application of electrical shocks with the object of causing venom elimination and reservoir collapse. The external epithelial surface of the reservoir was differentiated according to its morphological aspects into posterior, median, and proximal or duct regions at the ventral surface and into anterior and posterior regions at the dorsal surface. While the epithelium of the proximal region forms a ventral infolding, a dorsal salience is formed at this region. These structures and the epithelial regions persist both in full and empty reservoirs. The reservoir appeared full and distended before the electrical shocks were applied and became empty and withered afterwards due to the elimination of the secretion, without any reductions in length. Nevertheless, some secretion was kept inside the lumen, thus suggesting a possible role for the reservoir in the modification of the secretion.
Resumo:
Hydrolytic enzymes from hypopharyngeal gland extracts of newly emerged, nurse and foraging workers of two eusocial bees, Scaptotrigona postica, a native Brazilian stingless bee, and the Africanized honey bee (Apis mellifera) in Brazil, were compared. The hypopharyngeal gland is rich in enzymes in both species. Fifteen different enzymes were found in the extracts, with only a few quantitative differences between the species. Some of the enzymes present in the extracts may have intracellular functions, while others seem to be digestive enzymes. Scaptotrigona postica, had lower β-glucosidase and higher lipase esterase activities than A. mellifera. The differences may be due to different feeding habits and behavioral peculiarities of the two species. ©FUNPEC-RP.
Resumo:
In Brazil, imidacloprid is a widely used insecticide on agriculture and can harm bees, which are important pollinators. The active ingredient imidacloprid has action on the nervous system of the insects. However, little has been studied about the actions of the insecticide on nontarget organs of insects, such as the Malpighian tubules that make up the excretory and osmoregulatory system. Hence, in this study, we evaluated the effects of chronic exposure to sublethal doses of imidacloprid in Malpighian tubules of Africanized Apis mellifera. In the tubules of treated bees, we found an increase in the number of cells with picnotic nuclei, the lost of part of the cell into the lumen, and a homogenization of coloring cytoplasm. Furthermore, we observed the presence of cytoplasmic vacuolization. We confirmed the increased occurrence of picnotic nuclei by using the Feulgan reaction, which showed the chromatin compaction was more intense in the tubules of bees exposed to the insecticide. We observed an intensification of the staining of the nucleus with Xylidine Ponceau, further verifying the cytoplasmic negative regions that may indicate autophagic activity. Additionally, immunocytochemistry experiments showed TUNEL positive nuclei in exposed bees, implicating increased cell apoptosis after chronic imidacloprid exposure. In conclusion, our results indicate that very low concentrations of imidacloprid lead to cytotoxic activity in the Malpighian tubules of exposed bees at all tested times for exposure and imply that this insecticide can alter honey bee physiology. © 2013 Wiley Periodicals, Inc.
Resumo:
Honey bee venom toxins trigger immunological, physiological, and neurological responses within victims. The high occurrence of bee attacks involving potentially fatal toxic and allergic reactions in humans and the prospect of developing novel pharmaceuticals make honey bee venom an attractive target for proteomic studies. Using label-free quantification, we compared the proteome and phosphoproteome of the venom of Africanized honeybees with that of two European subspecies, namely Apis mellifera ligustica and A. m. carnica. From the total of 51 proteins, 42 were common to all three subspecies. Remarkably, the toxins melittin and icarapin were phosphorylated. In all venoms, icarapin was phosphorylated at the 205Ser residue, which is located in close proximity to its known antigenic site. Melittin, the major toxin of honeybee venoms, was phosphorylated in all venoms at the 10Thr and 18Ser residues. 18Ser phosphorylated melittin-the major of its two phosphorylated forms-was less toxic compared to the native peptide. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Compositional data from 152 stingless bee (Meliponini) honey samples were compiled from studies since 1964, and evaluated to propose a quality standard for this product. Since stingless bee honey has a different composition than Apis mellifera honey, some physicochemical parameters are presented according to stingless bee species. The entomological origin of the honey was known for 17 species of Meliponini from Brazil, one from Costa Rica, six from Mexico, 27 from Panama, one from Surinam, two from Trinidad & Tobago, and seven from Venezuela, most from the genus Melipona. The results varied as follows: moisture (19.9-41.9g/100g), pH (3.15-4.66), free acidity (5.9-109.0meq/Kg), ash (0.01-1.18g/100g), diastase activity (0.9-23.0DN), electrical conductivity (0.49-8.77mS/cm), HMF (0.4-78.4mg/Kg), invertase activity (19.8-90.1IU), nitrogen (14.34-144.00mg/100g), reducing sugars (58.0-75.7g/100g) and sucrose (1.1-4.8g/100g). Moisture content of stingless bee honey is generally higher than the 20% maximum established for A. mellifera honey. Guidelines for further contributions would help make the physicochemical database of meliponine honey more objective, in order to use such data to set quality standards. Pollen analysis should be directed towards the recognition of unifloral honeys produced by stingless bees, in order to obtain standard products from botanical species. A honey quality control campaign directed to both stingless beekeepers and stingless bee honey hunters is needed, as is harmonization of analytical methods. © 2007 Asociación Interciencia.
Resumo:
In 1956, Africanized bees began to spread in the American continent from southern Brazil, where original African bees mated with European bees. A few years later, in 1990, these Africanized bees reached the United States and were found in Texas. Currently, these hybrid bees are found in several North American states and will probably reach the Canadian border in the future. Although the presence of Africanized bees had produced positive effects on Brazilian economy, including improvement in crop pollination and in honey production, turning Brazil into a major exporter, the negative impacts-such as swarming, aggressive behavior, and the ability to mass attack-resulted in serious and fatal envenomation with humans and animals. Victims of bee attacks usually develop a severe envenomation syndrome characterized by the release of a large amount of cytokines [interleukins (IL) IL-1, IL-6, IL-8], and tumor necrosis factor (TNF). Subsequently, such cytokines produce an acute inflammatory response that triggers adverse effects on skeletal muscles; bone marrow; hepatic and renal functions; and cardiovascular, central nervous, and immune systems. Finally, the aim of the present review is to study historical characteristics and current status of Africanized bees' spread, the composition of their venom, the impact of the bees on the Brazilian economy and ecology, and clinical aspects of their stings including immune response, and to suggest a protocol for bee sting management since there is no safe and effective antivenom available.