34 resultados para hierarchies of beliefs


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The discrete models of the Toda and Volterra chains are being constructed out of the continuum two-boson KP hierarchies. The main tool is the discrete symmetry preserving the Hamiltonian structure of the continuum models. The two-boson currents of KP hierarchy are being associated with sites of the corresponding chain by successive actions of discrete symmetry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that the multi-boson KP hierarchies possess a class of discrete symmetries linking them to discrete Toda systems. These discrete symmetries are generated by the similarity transformation of the corresponding Lax operator. This establishes a canonical nature of the discrete transformations. The spectral equation, which defines both the lattice system and the corresponding Lax operator, plays a key role in determining pertinent symmetry structure. We also introduce the concept of the square root lattice leading to a family of new pseudo-differential operators with covariance under additional Bäcklund transformations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An affine sl(n + 1) algebraic construction of the basic constrained KP hierarchy is presented. This hierarchy is analyzed using two approaches, namely linear matrix eigenvalue problem on hermitian symmetric space and constrained KP Lax formulation and it is shown that these approaches are equivalent. The model is recognized to be the generalized non-linear Schrödinger (GNLS) hierarchy and it is used as a building block for a new class of constrained KP hierarchies. These constrained KP hierarchies are connected via similarity-Bäcklund transformations and interpolate between GNLS and multi-boson KP-Toda hierarchies. Our construction uncovers the origin of the Toda lattice structure behind the latter hierarchy. © 1995 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We give the correct prescriptions for the terms involving ∂ -1 xδ(x - y), in the Hamiltonian structures of the AKNS and DNLS systems, necessary for the Jacobi identities to hold. We establish that the sl(2) and sl(3) AKNS systems are tri-Hamiltonians and construct two compatible Hamiltonian structures for the sl(n) AKNS system. We give a method for the derivation of the recursion operator for the sl(n + 1) DNLS system, and apply it explicitly to the sl(2) case, showing that such a system is tri-Hamiltonian. © 1998 Elsevier Science B.V.