75 resultados para hemidiscoidal — shape
Resumo:
A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show that these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserves the shape-invariance property presented by the primary system. q-deformed generalizations of Morse, Scarf and Coulomb potentials are given as examples.
Resumo:
Ladder operators can be constructed for all potentials that present the integrability condition known as shape invariance, satisfied by most of the exactly solvable potentials. Using the superalgebra of supersymmetric quantum mechanics, we construct the ladder operators for two exactly solvable potentials that present a subtle hidden shape invariance.
Resumo:
A class of shape-invariant bound-state problems which represent two-level systems are introduced. It is shown that the coupled-channel Hamiltonians obtained correspond to the generalization of the Jaynes-Cummings Hamiltonian.
Resumo:
Exact reflection and transmission coefficients for supersymmetric shape-invariant potentials barriers are calculated by an analytical continuation of the asymptotic wavefunctions obtained via the introduction of new generalized ladder operators. The general form of the wavefunction is obtained by the use of the F(-infinity, +infinity)-matrix formalism of Froman and Froman which is related to the evolution of asymptotic wavefunction coefficients.
Resumo:
A class of shape-invariant bound-state problems which represent transitions in a two-level system introduced earlier are generalized to include arbitrary energy splittings between the two levels as well as intensity-dependent interactions. We show that the coupled-channel Hamiltonians obtained correspond to the generalizations of the nonresonant and intensity-dependent Jaynes-Cummings Hamiltonians, widely used in quantized theories of lasers. In this general context, we determine the eigenstates, eigenvalues, the time evolution matrix and the population inversion matrix factor.
Resumo:
Ontogenetic shape changes in the skull of three species of the genus Caiman (C. latirostris, C. sclerops, and C. yacare) are compared by geometric morphometrics for three-dimensional configurations (the least-squares analysis). The technique for obtaining the landmark coordinates is a simplification of the algorithm for multidimensional scaling. The ontogenetic nonlinear shape changes are similar in the three species but occur in a lesser extent in C. latirostris. These seem to be correlated with functional changes in the skull. The uniform shape change corresponds to an elongation of the skull, dorsoventral flattening, and lateral compression in C. sclerops and C. yacare. There is some lateral broadening in C. latirostris. Differences in the ontogenetic processes probably cause the differences in diet observed between C. latirostris and the other two species. Neotenic evolution seems to have acted in the skull of C. latirostris, and a posterior amplification of the early divergence led to a repatterning of the shape ontogenetic trajectory in this species. (C) 1997 Wiley-Liss, Inc.
Resumo:
Residues of three pesticides (dimethoate, parathion, and pyrazophos) in two artichoke cultivars, Masedu and Spinoso sardo, were investigated. The amount of pesticides in artichokes was greatly affected by the head shape. In the case of the calix-shaped Masedu artichoke, the residues in whole heads at commercial ripening were on average about twice higher than those of the pagoda-shaped Spinoso sardo artichoke. In the heart this ratio was 4 to 42 times greater. Residue decay rates were very fast, mainly owing to the dilution effect due to head growth.
Resumo:
Diamictites interbedded with marine shales and turbidites onlap the eastern border of the Parana Basin (Southern Brazil). These poorly sorted sediments were deposited during the Permo-Carboniferous glaciation, and their matrix-supported clasts show no preferred orientation. These massive rocks have been studied using anisotropy of magnetic susceptibility (AMS) and grain shape fabric. Hysteresis loops and thermomagnetic measurements show that AMS depends mostly on the paramagnetic clays, but fine ferromagnetic particles also contribute to the anisotropy. The coarse silt to sand grain preferred orientation study supports the use of AMS in describing the diamictite fabric, at least regarding the orientation of the foliation. AMS and grain shape data reveal subhorizontal to weakly inclined magnetic and grain shape foliation parallel to the regional bedding. The magnetic lineations are normally scattered within the foliation plane in agreement with the oblate AMS ellipsoids found in these rocks. Both fabric patterns are consistent with deposition by subaqueous mudflows that were resedimented downslope, with elastic supply from continental sources. The off-vertical grain shape foliation poles suggest that the deposition of diamictites was controlled by the depocentre topography of the Rio do Sul sub-basin.
Resumo:
CaMoO4 (CMO) disordered and ordered thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace (RF) and in a microwave (MW) oven. The microstructure and surface morphology of the structure were monitored by atomic force microscopy (AFM) and high-resolution scanning electron microscopy (HRSEM). Order and disorder were characterized by X-ray diffraction (XRD) and optical reflectance. A strong photoluminescence (PL) emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were compared with density functional and Hartree-Fock calculations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Most lizards feed on a variety of food items that may differ dramatically in their physical and behavioral characteristics. Several lizard families are known to feed upon hard-shelled prey (durophagy). Yet, specializations toward true molluscivory have been documented for only a few species. As snails are hard and brittle food items, it has been suggested that a specialized cranial morphology, high bite forces, and an adapted feeding strategy are important for such lizards. Here we compare head and skull morphology, bite forces, and feeding kinematics of a snail-crushing teiid lizard (Dracaena guianensis) with those in a closely related omnivorous species (Tupinambis merianae). Our data show that juvenile D. guianensis differ from T. merianae in having bigger heads and greater bite forces. Adults, however, do not differ in bite force. A comparison of feeding kinematics in adult Dracaena and Tupinambis revealed that Dracaena typically use more transport cycles, yet are more agile in manipulating snails. During transport, the tongue plays an important role in manipulating and expelling shell fragments before swallowing. Although Dracaena is slow, these animals are very effective in crushing and processing hard-shelled prey. J. Exp. Zool. 317A:371381, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
The electronic states of quantum rings with centerlines of arbitrary shape and non-uniform width in a threading magnetic field are calculated. The solutions of the Schrodinger equation with Dirichlet boundary conditions are obtained by a variational separation of variables in curvilinear coordinates. We obtain a width profile that compensates for the main effects of the curvature variations in the centerline. Numerical results are shown for circular, elliptical, and limacon-shaped quantum rings. We also show that smooth and tiny variations in the width may strongly affect the Aharonov-Bohm oscillations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)