32 resultados para helical-core fiber
Resumo:
This study evaluated the effects of mechanical cycling on resin push-out bond strength to root dentin, using two strategies for fiber post cementation. Forty bovine roots were embedded in acrylic resin after root canal preparation using a custom drill of the fiber post system. The fiber posts were cemented into root canals using two different strategies (N = 20): a conventional adhesive approach using a three-step etch-and-rinse adhesive system combined with a conventional resin cement (ScotchBond Multi Purpose Plus + RelyX ARC ), or a simplified adhesive approach using a self-adhesive resin cement (RelyX U100). The core was built up with composite resin and half of the specimens from each cementation strategy were submitted to mechanical cycling (45 degree angle; 37 degrees C; 88 N; 4 Hz; 700,000 cycles). Each specimen was cross-sectioned and the disk specimens were pushed-out. The means from every group (n = 10) were statistically analyzed using a two-way ANOVA and a Tukey test (P = 0.05). The cementation strategy affected the push-out results (P < 0.001), while mechanical cycling did not (P = 0.3716). The simplified approach (a self-adhesive resin cement) had better bond performance despite the conditioning. The self-adhesive resin cement appears to be a good option for post cementation. Further trials are needed to confirm these results.
Resumo:
The aims of this study were to evaluate the effect of root canal filling techniques on root fracture resistance and to analyze, by finite element analysis (FEA), the expansion of the endodontic sealer in two different root canal techniques. Thirty single-rooted human teeth were instrumented with rotary files to a standardized working length of 14 mm. The specimens were embedded in acrylic resin using plastic cylinders as molds, and allocated into 3 groups (n=10): G(lateral) - lateral condensation; G(single-cone) - single cone; G(tagger) - Tagger's hybrid technique. The root canals were prepared to a length of 11 mm with the #3 preparation bur of a tapered glass fiber-reinforced composite post system. All roots received glass fiber posts, which were adhesively cemented and a composite resin core was built. All groups were subjected to a fracture strength test (1 mm/min, 45°). Data were analyzed statistically by one-way ANOVA with a significance level of 5%. FEA was performed using two models: one simulated lateral condensation and Tagger's hybrid technique, and the other one simulated the single-cone technique. The second model was designed with an amount of gutta-percha two times smaller and a sealer layer two times thicker than the first model. The results were analyzed using von Mises stress criteria. One-way ANOVA indicated that the root canal filling technique affected the fracture strength (p=0.004). The G(lateral) and G(tagger) produced similar fracture strength values, while G(single-cone) showed the lowest values. The FEA showed that the single-cone model generated higher stress in the root canal walls. Sealer thickness seems to influence the fracture strength of restored endodontically treated teeth.