167 resultados para hazardous metal ions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of 5-amino-1,3,4-thiadiazole-2-thiol modified silica gel (SiATT), and the results of a study of the adsorption and preconcentration (in batch, and in flow using a column technique) of Cd(II), Co(II), Cu(II), Fe(III), Ni(II), Pb(II) and Zn(II) in ethanol medium. The adsorption capacities for each metal ion were (in mmol g -1): Cd(II) = 0.11, Co(II) = 0.10, Cu(II) = 0.20, Fe(III) = 0.20, Ni(II) = 0.16, Pb(II) = 0.08 and Zn(II) = 0.12. The results obtained in the flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 2 g of SiATT, using 5 mL of 2.0 mol L -1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the development of a preconcentration method and quantification by Flame AAS of metal ions at trace level in fuel ethanol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state M-4-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 4-MeO-Bz is 4-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to have information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds. © 2005 Akadémiai Kiadó, Budapest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Silica gel with a specific area of 382 m2 g-1 and an average pore diameter of 60 Å was chemically modified with 2-amino-1,3,4-thiadiazole, for the purpose of selective adsorption of heavy metals ions and possible use as a chemically modified carbon paste electrode (CMCPE). The following properties of this functionalized silica gel are discussed: selective adsorption of heavy metal ions measured by batch and chromatographic column techniques, and utilization as preconcentration agent in a chemically modified carbon paste electrode (CMCPE) for determination of mercury(II). The chemical selectivity of this functional group and the selectivity of voltammetry were combined for preconcentration and determination. ©2006 Sociedade Brasileira de Química.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal stability and thermal decomposition of succinic acid, sodium succinate and its compounds with Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) were investigated employing simultaneous thermogravimetry and differential thermal analysis (TG-DTA) in nitrogen and carbon dioxide atmospheres and TG-FTIR in nitrogen atmosphere. On heating, in both atmospheres the succinic acid melt and evaporate, while for the sodium succinate the thermal decomposition occurs with the formation of sodium carbonate. For the transition metal succinates the final residue up to 1180 °C in N 2 atmosphere was a mixture of metal and metal oxide in no simple stoichiometric relation, except for Zn compound, where the residue was a small quantity of carbonaceous residue. For the CO 2 atmosphere the final residue up to 980 °C was: MnO, Fe 3O 4, CoO, ZnO and mixtures of Ni, NiO and Cu, Cu 2O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid state M-L, where M stands for bivalent transition metals (Mn(II), Fe(II), Co(II), Ni(II), Cu(II) and Zn(II)) and L is mandelate, were synthesized. Simultaneous thermogravimetry and differential scanning calorimetry, elemental analysis and complexometry were used to establish the stoichiometry and to study the thermal behaviour of these compounds in CO2 and N2 atmospheres. The results show that all the compounds were obtained in the anhydrous state and in agreement with the general formula ML2. The thermal decomposition of the compounds occurs in a single (Cu(II)), two (Ni(II)) three (Fe(II), Co(II)), four (Mn(II)) and five (Zn(II)) steps. The results also provided information concerning the ligand's denticity, thermal behaviour, final residues and identification of gaseous products evolved during the thermal decomposition of these compounds. © 2012 Akadémiai Kiadó, Budapest, Hungary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A silica surface chemically modified with [3-(2,2'-dipyridylamine) propyl] groups was prepared, characterized, and evaluated for its metal ion preconcentration in fuel ethanol. To our knowledge, we are the first authors who have reported the present modification on silica gel surface. The material was characterized using infrared spectra, scanning electronic microscopy, and 13C and 29Si solid-state NMR spectra. Batch and column experiments were conducted to investigate for metal ion removal from fuel ethanol. The results showed that the Langmuir model describes the sorption equilibrium data of the metal ions in a satisfactory way. From the Langmuir isotherms, the following maximum adsorption capacities (in mmolg -1) were determined: 1.81 for Fe(III), 1.75 for Cr(III), 1.30 for Cu(II), 1.25 for Co(II), 1.15 for Pb(II), 0.95 for Ni(II), and 0.87 for Zn(II). Thermodynamic functions, the change of free energy (ΔG), enthalpy (ΔH), and entropy (ΔS) showed that the adsorption of metal ions onto Si-Pr-DPA was feasible, spontaneous, and endothermic. The sorption-desorption of the metal ions made possible the development of a preconcentration and quantification method of metal ions in fuel ethanol. © 2012 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this research was the preparation of a silsesquioxane functionalized with eight chloropropyl chains (T8-PrCl) and of a new derivative functionalized with a pendant linear chain (2-amino-1,3,4-thiadiazole - ATD; T8-Pr-ATD). The two nanostructured materials were characterized by 13C and 29Si NMR, FTIR and elemental analysis. The new nanostructured material, octakis[3-(2-amino-1,3,4-thiadiazole)propyl] octasilsesquioxane (T8-Pr-ATD), was tested as a ligand for transition-metal ions with a special attention to adsorption isotherms. The adsorption was performed using a batchwise process and the organofunctionalized surface showed the ability to adsorb the metal ions Cu (II), Co (II), and Ni (II) from water and ethanol. The adsorption isotherms were fitted by Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) model. The kinetics of adsorption of metals were performed using three models such as pseudo-first order, pseudo-second order and Elovich. The Langmuir and Elovich models were the most appropriate to describe the adsorption and kinetic data, respectively. Furthermore, the T8-Pr-ATD was successfully applied to the analysis of environmental samples (river and sea water). Subsequently, a new nanomaterial was prepared by functionalization of the T8-Pr-ATD with a Mo (II) organometallic complex (T8-Pr-ATD-Mo). Only a few works in the literature have reported this type of substitution, and none dealt with ATD and Mo (II) complexes. The new Mo-silsesquioxane organometallic nanomaterial was tested as precursor in the epoxidation of cyclooctene and styrene. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synthesis, characterization and thermal decomposition of bivalent transition metal α-hydroxyisobutyrates, M(C4H7O 3)2·nH2O (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II)), as well as the thermal behaviour of α-hydroxyisobutyric acid and its sodium salt were investigated employing simultaneous thermogravimetry and differential scanning calorimetry (TG-DSC), infrared spectroscopy (FTIR), TG-DSC coupled to FTIR, elemental analysis and complexometry. All the compounds were obtained as dihydrated, except the copper one which was obtained in the anhydrous state. The thermal decomposition of the anhydrous compounds occurs in a single or two steps and the final residue up to 235 C (Mn), 300 C (Fe), 305 C (Co), 490 C (Ni), 260 C (Cu) and 430 C (Zn) is Mn2O3, Fe2O3, Co3O 4, NiO, CuO and ZnO, respectively. The results also provided information concerning the ligand's denticity and identification of the gaseous products evolved during the thermal decomposition of these compounds. Copyright © 2013 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the synthesis and characterization of a new octakis[3-(2,2'-dipyridylamine)propyl]octasilsesquioxane (T8-Pr-DPA), and a study of the metal ion preconcentration in fuel ethanol. Batch and column experiments were conducted to investigate for the removal of heavy metal ions from fuel ethanol. The results showed that the Langmuir allowed to describe the sorption equilibrium data of the metal ions on T8-Pr-DPA in a satisfactory way. The following maximum adsorption capacities (in mmolg-1) were determined: 3.62 for Fe (III), 3.32 for Cr (III), 2.15 for Cu (II), 1.80 for Co (II), 1.62 for Pb (II), 1.32 for Ni (II) and 0.88 for Zn (II). The thermodynamic parameters for the adsorption process such as free energy of adsorption (δG), enthalpy of adsorption (δH) and entropy of adsorption (δS) were calculated. Thermodynamic parameters showed that the system has favorable enthalpic, Gibbs free energy, and entropic values. The sorption-desorption of the metal ions has made possible the development of a preconcentration and determination method of metal ions at trace level in fuel ethanol. The method of quantitative analysis for Fe, Cu, Ni and Zn in fuel ethanol by Flame AAS was validated. Several parameters have been taken into account and evaluated for the validation of method, namely: linearity, limit of detection, limit of quantification, and the relative standard deviation and accuracy. The accuracy of the method was assessed by testing analyte recovery in the fuel ethanol samples. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, it was demonstrated that β-galactosidase can be deactivated and reactivated with EDTA and divalent metal ions. The enzyme was deactivated after 20 minutes in EDTA solution. Maximal deactivation at the lowest EDTA concentration (10-3 mol.L-1) occurred in the presence of Tris-HCl buffer (pH 7.0). The enzyme recovered 50% of its initial activity after 10 minutes at Mg2+concentrations higher than 0.1 mmol.L-1. Experimental concentrations of 0.1 mmol.L-1 Mn2+ and 1.0 mmol.L-1 Co2+ were sufficient to reactivate the enzyme to around 300% of the control activity for the Mn2+ ion and nearly 100% for the Co2+ ion. The enzyme gradually lost its activity when the Co2+ concentration was 10-2 mol.L-1. Ni2+ and Zn2+ were unable to restore the catalytic activity. Km app and Vmax app were 1.95 ± 0.05 mmol.L-1 and 5.40 ± 0.86x10-2 mmol.min-1.mg-1, with o-NPG as substrate. Optimal temperature and pH were 34oC and 7.5. The half-life (t1/2) at 30°C was 17.5 min for the holoenzyme and 11.0 min for the apoenzyme. With respect to pH variation, the apoenzyme proved to be more sensitive than the holoenzyme. Keywords: β-galactosidase. Divalent metallic ions. Enzyme activity. Stability. RESUMO Efeito de íons metálicos divalentes na atividade e estabilidade da β-galactosidase isolada de Kluyveromyces lactis Este estudo demonstra como a β-galactosidase pode ser desativada e reativada usando EDTA e íons metálicos divalentes. A enzima foi desativada após 20 minutos na presença de EDTA. Desativação máxima para a menor concentração de EDTA (10-3 mol.L-1) ocorreu na presença do tampão Tris-HCl. A enzima recuperou 50% de sua atividade inicial após 10 minutos na presença de Mg2+ em concentrações superiores a 0,1mmol.L-1. Concentrações de 10-4 e 10-3mol.L-1 de Mn2+ e Co2+ foram suficientes para reativar a enzima em 300% comparado ao controle de íons Mn2+ e aproximadamente 100% para íons Co2+. A enzima perdeu gradualmente a sua atividade quando a concentração foi de 10-2 mol.L-1. Ni2+ e Zn2+ foram incapazes de restabelecer a atividade catalítica. Km app e Vmax app foram 1,95 ± 0,05 mmol.L-1 e 5,40 ± 0,86 x 10-2 mmol.min-1.mg-1. A temperatura e pH ótimos foram 34ºC e 7,5. A meia vida da holoenzima foi de 17,5 min a 30ºC e para a apoenzima foi de 11,0 min a 30ºC. Quanto à variação de pH, a apoenzima provou ser mais sensível que a holoenzima. Palavras-chave: β-galactosidase. Íons metálicos divalentes. Atividade enzimática. Estabilidade.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deposition of Cu2+ and Zn2+ from aqueous solution has been investigated by a combination of classical molecular dynamics, density functional theory, and a theory developed by the authors. For both cases, the reaction proceeds through two one-electron steps. The monovalent ions can get close to the electrode surface without losing hydration energy, while the divalent ions, which have a stronger solvation sheath, cannot. The 4s orbital of Cu interacts strongly with the sp band and more weakly with the d band of the copper surface, while the Zn4s orbital couples only to the sp band of Zn. At the equilibrium potential for the overall reaction, the energy of the intermediate Cu+ ion is only a little higher than that of the divalent ion, so that the first electron transfer can occur in an outer-sphere mode. In contrast, the energy of the Zn+ ion lies too high for a simple outer-sphere reaction to be favorable; in accord with experimental data this suggests that this step is affected by anions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)