33 resultados para hög måluppfyllelse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermogravimetry (TG), energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), mapping surface and X-ray diffraction (XRD) were used for the study of solid-state reaction on Pt-15%Rh with electrodeposited mercury. The results suggest when heated the mercury film react with the Pt-15%Rh alloy to form intermetallics having different thermal stabilities indicated by three mass loss steps. The first mass loss step occurs between room temperature and 184 degrees C only the bulk Hg is removed and PtHg4, PtHg2 and RhHg2 were characterized by XRD. The second step, between 184 and 271 degrees C, was attributed to PtHg4 decomposition with formation of PtHg2 stabilized by RhHg2. The third step, between 271 and 340 degrees C, was attributed to decomposition of a solid-solution of PtHg2/RhHg2. The fourth step, between 340 and 600 degrees C, was ascribed to: (1) a thermal decomposition of PtHg2, formed by a PtHg eutectoid reaction (similar to 340 degrees C) on the surface and (2) Hg removal from a solid solution of Pt-15%Rh(Hg). (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AgSIE was used for the direct analysis of folic acid (FA), with a detection limit and lower level of quantitation of 6.8 x10-10 mol L-1 and 2.3 x 10 8 mol L-1. The analysis in fresh and processed fruits was done without any sample pretreatment. In strawberry and acerola juices, FA concentration level values were below the method detection limit. FA was detectable in peach (77.7 0.4 mg L-1 and 64.4 0.5 mgL-1), Persian lime (45.4 0.7 mg L-1), pineapple Hawaii (66.2 0.4 mgL-1), pear pineapple (35.3 0.6 mgL-1), cashew (54.4 0.5 mgL-1) , passion fruit (73.2 0.3 mgL-1), and apple (84.4 0.5 mg L-1 ).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activation of aluminum surface has the most various purposes as for example the search for the surface activation mechanism and the corrosion products by mercury ions. The objective of this work is to study the reactivity of the surface of aluminum metal when activated by mercury ions (Hg2+), with the consequent formation of an Al-Hg amalgam. Results demonstrate that the kinetics of the reaction, by measuring the mass change with time of the corrosion product formed between Al and Hg, and analysis by infrared spectroscopy (IR) that the product of the reaction between the amalgam, located on the surface, and the atmospheric oxygen is Al2O3 (aluminum hydroxide). The results also indicate that the kinetics of the reaction between the amalgam (Hg-Al) and atmospheric oxygen is of first order and reach a region where there is no more formation of product