87 resultados para glycogen muscle level


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physical exercises have been recommended in the prevention of non-insulin dependent diabetes mellitus (NIDDM), but the mechanisms involved in this intervention are not yet fully understood. Experimental models offer the opportunity for the study of this matter. The present study was designed to analyze the diabetes evolution in rats submitted to neonatal treatment with alloxan with the objective of verifying the suitability of the model to future studies with exercises. For this, newly born rats (6 days old) received intraperitoneal alloxan (A = 200 mg/kg of body weight). Rats injected with vehicle (citrate buffer) were used as controls (C). The fasting blood glucose level (mg/dL) was higher in the alloxan group at the day 28 (C=47.25 +/- 5.08; A=54.51 +/- 7.03) but not at the 60 day of age (C=69.18 +/- 8.31; A=66.81 +/- 6.08). The alloxan group presented higher blood glucose level during glucose tolerance test (GTT) (mg/dL. 120 min) in relation to the control group both at day 28 (C=16908.9 +/- 1078.8; A=21737,7 +/- 1106.4) and at day 60 (C=11463.45 +/- 655.30; A=15282.21 +/- 1221.84). Insulinaemia during GTT (ng/mL.120 min) was lower at day 28 (C=158.67 +/- 33.34; A=123.90 +/- 19.80), but presented no difference at day 60 (C=118.83 +/- 26.02; A=97.8 +/- 10.88). At day 60, the glycogen concentration in the soleus muscle (mg/100mg) was lower in the alloxan group (0.3 +/- 0.13) in relation to the control group (0.5 +/- 0.07). No difference was observed between groups in relation to (mu mol/g.h): Glucose Uptake (C = 5.8 +/- 0.63; A = 5.2 +/- 0.73); Glucose Oxidation (C= 4.3 +/- 1.13; A= 3.9 +/- 0.44); Glycogen Synthesis (C= 0.8 +/- 0.18; A= 0.7 +/- 0.18) and Lactate Production (C= 3.8 +/- 0.8; A= 3.8 0.7) by the isolated soleus muscle. The glucose-stimulated insulin secretion (16.7mM) by the isolated islets (ng/5 islets. h) of the alloxan group was lower (14.3 +/- 4.7) than the control group (32.0 +/- 7.9). Thus, we may conclude that this neonatal diabetes induction model gathers interesting characteristics and may be useful for further studies on the role of the exercise in the diabetes mellitus appearance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thyrotoxicosis, a condition in which there is an excessive amount of circulating thyroid hormones, leads to reduced glycogen content in different tissues. In this study we analyzed the effects of aerobic swimming training on liver, heart, and skeletal muscle glycogen content in experimentally induced thyrotoxicosis. Wistar male rats were divided into euthyroid sedentary (ES, n = 12), euthyroid trained (ET, n = 11), thyrotoxic sedentary (TS, n = 12), and thyrotoxic trained (TT, n = 10) groups. Thyrotoxic groups received daily i.p. doses of T4 (sodium levothyroxine, 25 mu g/100 g body mass) through the experimental period, and trained groups swam for 1 h at 80% of the aerobic-anaerobic transition intensity, 5 days/week for 4 weeks. Heart and liver glycogen stores were similar to 30% lower in T4 treated compared with nontreated groups, but were not changed by training status. on the other hand, glycogen content in mixed fiber type gastrocnemius of TT was 1.5- to 2.3-fold greater than those in other groups, whereas no significant differences were found for the slow soleus muscle. Increased gastrocnemius but not soleus, liver, or heart glycogen indicates that in mild long-term thyrotoxicosis chronic swimming affects glycogen stores in a tissue-specific manner.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: This study aims to investigate the effects of low-level laser therapy (LLLT) on muscle regeneration. For this purpose, the anterior tibialis muscle of 48 male Wistar rats received AlGaInP laser treatment (785 nm) after surgically-induced injury.Background Data: Few studies have been conducted on the effects of LLLT on muscle regeneration at different irradiation doses.Materials and Methods: The animals were randomized into four groups: uninjured rats (UN); uninjured and laser-irradiated rats (ULI); injured rats (IN); and injured and laser-irradiated rats (ILI). The direct contact laser treatment was started 24 h after surgery. An AlGaInP diode laser emitting 75 mW of continuous power at 785 nm was used for irradiation. The laser probe was placed at three treatment points to deliver 0.9 J per point, for a total dose of 2.7 J per treatment session. The animals were euthanized after treatment sessions 1, 2, and 4. Mounted sections were stained with hematoxylin and eosin and used for quantitative morphological analysis, in which the number of leukocytes and fibroblasts were counted over an area of 4480 mu m(2). The data were statistically analyzed by analysis of variance (ANOVA) and the Bonferroni t-test.Results: Quantitative data showed that the number of both polymorphonuclear and mononuclear leukocytes in the inflammatory infiltrate at the injury site was smaller in the ILI(1), ILI(2), and ILI(4) subgroups compared with their respective control subgroups (IN(1), IN(2), and IN(4)) for sessions 1, 2, and 4, respectively (p < 0.05). on the other hand, the number of fibroblasts increased after the fourth treatment session (p < 0.05). With regard to the regeneration of muscle fibers following injury, only after the fourth treatment session was it possible to find muscle precursor cells such as myoblasts and some myotubes in the ILI(4) subgroup.Conclusion: During the acute inflammatory phase, the AlGaInP laser treatment was found to have anti-inflammatory effects, reducing the number of leukocytes at the injury site and accelerating the regeneration of connective tissue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we evaluated the involvement of rat ventral prostate smooth muscle cells (SMC) in secretory activity and whether this function is modulated after castration. Cell morphology was examined at both light and electron microscopy levels and the organelles involved in secretory function were labeled by the zinc-iodide-osmium (ZIO) method at the ultrastructural level and their volume density was determined by stereology. Castration resulted in marked changes of the SMC, which adopted a spinous aspect and abandoned the layered arrangement observed in the prostates of non-castrated rats. The volume density of ZIO reactive organelles increased progressively after castration, reaching significantly higher levels 21 days after castration, Since previous studies have demonstrated that SMC express SMC markers (even 21 days after castration) and are able to respond to adrenergic stimulation, we concluded that differentiated SMC are able to shift from a predominantly contractile to a more synthetic phenotype without changing their differentiation status. (c) 2005 International Federation for Cell Biology. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differently graded areas of human prostate adenocarcinoma were examined after Masson's trichrome staining or immunohistochemistry for smooth muscle alpha-actin, type IV collagen and laminin. In addition, the ultrastructure of the prostatic smooth muscle cells (SMC) during glandular proliferation and epithelial invasion in selected tumors was studied. The SMC formed a thick layer below the epithelial structures in unaffected areas and were closely associated with each other in homotypic interactions. As the tumor grade increased, the SMC gradually lost interactions with each other and became atrophic. With the growth of the epithelial compartment, the SMC initially segregated to the tumor periphery and the intercellular spaces increased. In high grade tumors, the epithelial cancer cells invaded the spaces between the SMC. Immunohistochemical analysis of the basal membrane revealed increased disruption of the usually thick basal membrane, which became thinner and faintly stained with each of the antibodies used. We conclude that most SMC become atrophic following epithelial invasion in human tumors and that degradation of the basal membrane is an important factor in this process. At the ultrastructural level, different SMC phenotypes occur in prostatic tissues during epithelial invasion. Interconversion between these phenotypes is suggested and a probable relationship among them is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glycogen synthases catalyze the transfer of a glucosyl moiety from a nucleotide phosphosugar to a nascent glycogen chain via an alpha1-->4 linkage. Although many genes coding for glycogen synthases have been described, the enzymes from rabbit and yeast are the best characterized. The fungus Neurospora crassa accumulates glycogen during exponential growth, and mobilizes it at the onset of stationary phase, or when placed at high temperature or starved for carbon. Through a PCR methodology, the gsn cDNA coding for the N. crassa glycogen synthase was isolated, and the amino acid sequence of the protein was deduced. The product of the cDNA seems to be the only glycogen synthase present in N. crassa. Characterization of the gsn cDNA revealed that it codes for a 706-amino acids protein, which is very similar to mammalian and yeast glycogen synthases. Gene expression increased during exponential growth, reaching its maximal level at the end of the exponential growth phase, which is consistent with the pattern of glycogen synthase activity and glycogen level. Expression of the gsn is highly regulated at the transcriptional level. Under culture conditions that induce heat shock, conidiation, and carbon starvation, expression of the gsn gene was decreased, and glycogen synthase activity and glycogen content behaved similarly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The role of beta(2)-agonist and of cAMP in chick skeletal muscle proteolytic pathways and protein synthesis was investigated using an in vitro preparation that maintains tissue glycogen stores and metabolic activity for several hours.2. In extensor digitorum longus (EDL) muscle total proteolysis decreased by 15 to 20% in the presence of equimolar concentrations of epinephrine, clenbuterol, a selective beta(2)-agonist, or dibutyryl-cAMP. Rates of protein synthesis were not altered by clenbuterol or dibutyryl-cAMP.3. The decrease in the rate of total protein degradation induced by 10(-5) M clenbuterol was paralleled by a 44% reduction in Ca2+-dependent proteolysis, which was prevented by 10(-5) M ICI 118.551, a selective beta(2)-antagonist.4. No change was observed in the activity of the lysosomal, ATP-dependent, and ATP-independent proteolytic systems. Ca2+-dependent proteolytic activity was also reduced by 58% in the presence of 10(-4) M dibutyryl-cAMP or isobutylmethylxanthine.5. The data suggest that catecholamines exert an inhibitory control of Ca2+-dependent proteolysis in chick skeletal muscle, probably mediated by beta(2)-adrenoceptors, with the participation of a cAMP-dependent pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we investigated the hypothesis that the simple set of rules used to explain the modulation of muscle activities during single-joint movements could also be applied for reversal movements of the shoulder and elbow joints. The muscle torques of both joints were characterized by a triphasic impulse. The first impulse of each joint accelerated the limb to the target and was generated by an initial burst of the muscles activated first (primary mover). The second impulse decelerated the limb to the target, reversed movement direction and accelerated the limb back to the initial position, and was generated by an initial burst of the muscles activated second (secondary movers). A third impulse, in each joint, decelerated the limb to the initial position due to the generation of a second burst of the primary movers. The first burst of the primary mover decreased abruptly, and the latency between the activation of the primary and secondary movers varied in proportion with target distances for the elbow, but not for the shoulder muscles. All impulses and bursts increased with target distances and were well coupled. Therefore, as predicted, the bursts of muscle activities were modulated to generate the appropriate level of muscle torque. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The initiation of glycogen synthesis requires the protein glycogenin, which incorporates glucose residues through a self-glucosylation reaction, and then acts as substrate for chain elongation by glycogen synthase and branching enzyme. Numerous sequences of glycogenin-like proteins are available in the databases but the enzymes from mammalian skeletal muscle and from Saccharomyces cerevisiae are the best characterized. We report the isolation of a cDNA from the fungus Neurospora crassa, which encodes a protein, GNN, which has properties characteristic of glycogenin. The protein is one of the largest glycogenins but shares several conserved domains common to other family members. Recombinant GNN produced in Escherichia coli was able to incorporate glucose in a self-glucosylation reaction, to trans-glucosylate exogenous substrates, and to act as substrate for chain elongation by glycogen synthase. Recombinant protein was sensitive to C-terminal proteolysis, leading to stable species of around 31 kDa, which maintained all functional properties. The role of GNN as an initiator of glycogen metabolism was confirmed by its ability to complement the glycogen deficiency of a S. cerevisiae strain (glg1 glg2) lacking glycogenin and unable to accumulate glycogen. Disruption of the gnn gene of N. crassa by repeat induced point mutation (RIP) resulted in a strain that was unable to synthesize glycogen, even though the glycogen synthase activity was unchanged. Northern blot analysis showed that the gnn gene was induced during vegetative growth and was repressed upon carbon starvation. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Queiroz BC, Cagliari MF, Amorim CF, Sacco IC. Muscle activation during four Pilates core stability exercises in quadruped position. Arch Phys Med Rehabil 2010;91: 86-92.Objective: To compare the activity of stabilizing trunk and hip muscles in 4 variations of Pilates stabilizing exercises in the quadruped position.Design: Repeated-measures descriptive study.Setting: A biomechanics laboratory at a university school of medicine.Participants: Healthy subjects (N=19; mean age +/- SD, 31 +/- 5y; mean weight +/- SD, 60 +/- 11 kg; mean height +/- SD, 166 +/- 9cm) experienced in Pilates routines.Interventions: Surface electromyographic signals of iliocostalis, multifidus, gluteus maximus, rectus abdominis, and external and internal oblique muscles were recorded in 4 knee stretch exercises: retroverted pelvis with flexed trunk; anteverted pelvis with extended trunk; neutral pelvis with inclined trunk; and neutral pelvis with trunk parallel to the ground.Main Outcome Measures: Root mean square values of each muscle and exercise in both phases of hip extension and flexion, normalized by the maximal voluntary isometric contraction.Results: The retroverted pelvis with flexed trunk position led to significantly increased external oblique and gluteus maximus muscle activation. The anteverted pelvis with trunk extension significantly increased multifidus muscle activity. The neutral pelvis position led to significantly lower activity of all muscles. Rectus abdominis muscle activation to maintain body posture was similar in all exercises and was not influenced by position of the pelvis and trunk.Conclusions: Variations in the pelvic and trunk positions in the knee stretch exercises change the activation pattern of the multifidus, gluteus maximus, rectus abdominis, and oblique muscles. The lower level of activation of the rectus abdominis muscle suggests that pelvic stability is maintained in the 4 exercise positions.