64 resultados para forage pea


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the effect of simulated chewing in the laboratory on the survival of seeds of four tropical forage legumes (butterfly pea, Clitorea ternatea; estilosantes, Stylosanthes capitata/S. macrocephala 'Campo Grande; archer, Macrotyloma axillare and perennial soybean, Neonotonia wightii) submitted to different periods of acid enzymatic digestion in vitro. Three trials were conducted to observe the percentage of destroyed seeds by the mastication; to compare the germination of the seeds (intact seeds, simulated mastication, scarification with sandpaper, mastication and scarification with sandpaper). And, finally the seeds were incubated at 39oC with hydrochloric acid and pepsin for: 0, 2, 4, 8, 12 and 24 hours. The percentages of not destroyed seeds in mastication (archer, 91,5; perennial soybean, 88.0; butterfly pea, 82.1, and estilo, 81.1), associated with the beneficial effects of scarification on germination (64.7, 60.0, 92.0 e 87.3%, respectively) and the effects of time of acid-enzymatic digestion (75% higher if they stay 24 hours in HCl + pepsin) associated to the hard and not permeable coats of legume seeds, allow a high potential for resistance, and to pass intact through the digestive tract of cattle, being able to germinate when defecated in the pastures. However, estilo should not be included in the feeding of cattle for this purpose, because it do not resists the acid-enzyme digestion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intercropping corn (Zea mays L.) with forages, such as palisadegrass {Urochloa brizantha (Hochst. ex A. rich.) r. D. Webster [syn. Brachiaria brizantha (Hochst. ex A. rich.) Stapf]} or guineagrass [Megathyrsus maximus (Jacq.) B. K. Simon & S. W. L. Jacobs (syn. Panicum maximum Jacq.)], provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to evaluate what time these forages have to be sown into corn systems to avoid reductions in both corn and forage production. This study, conducted for three growing seasons at Botucatu, Brazil, evaluated nutrient concentration and yield of corn as affected by time of forage intercropped as well as forage's dry matter production. our data showed that intercropping systems did not reduce leaf nutrient concentrations and grain yield of corn in relation to sole corn. The simultaneous intercropping of corn and guineagrass resulted in the lowest plant population (51, 200 plant ha-1), number of ears per plant (1.0), and, consequently, the lowest corn grain yield (9801 kg ha-1). Guineagrass seeded at the time of corn fertilizer topdressing resulted in the highest plant population (59, 400 plants ha-1), number of ears per plant (1.2), and corn grain yield (12, 077 kg ha-1). Forage production was highest when intercrop was done simultaneously. palisadegrass could be intercropped with corn both simultaneously or at topdressing fertilization stage. In contrast, it is recommended that guineagrass should only be intercropped with corn at topdressingfertilization. © Crop Science Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to use 15N to label microbial cells to allow development of equations for estimating the microbial contamination in ruminal in situ incubation residues of forage produced under tropical conditions. A total of 24 tropical forages were ruminal incubated in 3 steers at 3 separate times. To determine microbial contamination of the incubated residues, ruminal bacteria were labeled with 15N by continuous intraruminal infusion 60 h before the first incubation and continued until the last day of incubation. Ruminal digesta was collected for the isolation of bacteria before the first infusion of 15N on adaptation period and after the infusion of 15N on collection period. To determine the microbial contamination of CP fractions, restricted models were compared with the full model using the model identity test. A value of the corrected fraction A was estimated from the corresponding noncorrected fraction by this equation: Corrected A fraction (ACPC) = 1.99286 + 0.98256 × A fraction without correction (ACPWC). The corrected fraction B was estimated from the corresponding noncorrected fraction and from CP, NDF, neutral detergent insoluble protein (NDIP), and indigestible NDF (iNDF) using the equation corrected B fraction (BCPC) = -17.2181 - 0.0344 × fraction B without correction (BCPWC) + 0.65433 × CP + 1.03787 × NDF + 2.66010 × NDIP - 0.85979 × iNDF. The corrected degradation rate of B fraction (kd)was estimated using the equation corrected degradation rate of B fraction (kdCPC) = 0.04667 + 0.35139 × degradation rate of B fraction without correction (kdCPWC) + 0.0020 × CP - 0.00055839 × NDF - 0.00336 × NDIP + 0.00075089 × iNDF. This equation was obtained to estimate the contamination using CP of the feeds: %C = 79.21 × (1 - e-0.0555t) × e-0.0874CP. It was concluded that A and B fractions and kd of CP could be highly biased by microbial CP contamination, and therefore these corrected values could be obtained mathematically, replacing the use of microbial markers. The percentage of contamination and the corrected apparent degradability of CP could be obtained from values of CP and time of incubation for each feed, which could reduce cost and labor involved when using 15N. © 2013 American Society of Animal Science. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sorghum is an excellent alternative to other grains in poor soil where corn does not develop very well, as well as in regions with warm and dry winters. Intercropping sorghum [Sorghum bicolor (L.) Moench] with forage crops, such as palisade grass [Brachiaria brizantha (Hochst. ex A. Rich) Stapf] or guinea grass (Panicum maximum Jacq.), provides large amounts of biomass for use as straw in no-tillage systems or as pasture. However, it is important to determine the appropriate time at which these forage crops have to be sown into sorghum systems to avoid reductions in both sorghum and forage production and to maximize the revenue of the cropping system. This study, conducted for three growing seasons at Botucatu in the State of São Paulo in Brazil, evaluated how nutrient concentration, yield components, sorghum grain yield, revenue, and forage crop dry matter production were affected by the timing of forage intercropping. The experimental design was a randomized complete block design. Intercropping systems were not found to cause reductions in the nutrient concentration in sorghum plants. The number of panicles per unit area of sorghum alone (133,600), intercropped sorghum and palisade grass (133,300) and intercropped sorghum and guinea grass (134,300) corresponded to sorghum grain yields of 5439, 5436 and 5566kgha-1, respectively. However, the number of panicles per unit area of intercropped sorghum and palisade grass (144,700) and intercropped sorghum and guinea grass (145,000) with topdressing of fertilizers for the sorghum resulted in the highest sorghum grain yields (6238 and 6127kgha-1 for intercropping with palisade grass and guinea grass, respectively). Forage production (8112, 10,972 and 13,193Mg ha-1 for the first, second and third cuts, respectively) was highest when sorghum and guinea grass were intercropped. The timing of intercropping is an important factor in sorghum grain yield and forage production. Palisade grass or guinea grass must be intercropped with sorghum with topdressing fertilization to achieve the highest sorghum grain yield, but this significantly reduces the forage production. Intercropping sorghum with guinea grass sown simultaneously yielded the highest revenue per ha (€ 1074.4), which was 2.4 times greater than the revenue achieved by sowing sorghum only. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Artes - IA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)