93 resultados para fermion masses
Resumo:
We consider the mass generation for both charginos and neutralinos in a 3-3-1 supersymmetric model. We show that R-parity breaking interactions leave the electron and one of the neutrinos massless at the tree level. However, the same interactions induce masses for these particles at the 1-loop level. Unlike the similar situation in the minimal supersymmetric standard model, the masses of the neutralinos are related to the masses of the charginos.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to predict and study bright solitons in a degenerate fermion-fermion mixture in a quasi-one-dimensional cigar-shaped geometry using variational and numerical methods. Due to a strong Pauli-blocking repulsion among identical spin-polarized fermions at short distances there cannot be bright solitons for repulsive interspecies fermion-fermion interactions. However, stable bright solitons can be formed for a sufficiently attractive interspecies interaction. We perform a numerical stability analysis of these solitons and also demonstrate the formation of soliton trains. These fermionic solitons can be formed and studied in laboratory with present technology.
Resumo:
We investigate the possibility that four-fermion contact interactions give rise to the observed deviation from the Standard Model prediction for the weak charge of cesium, through one-loop contributions. We show that the presence of loops involving the third generation quarks can explain such deviation.
Resumo:
We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic dark solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a harmonic as well as a periodic optical-lattice potential. The dark soliton with a 'notch' in the probability density with a zero at the minimum is simulated numerically as a nonlinear continuation of the first vibrational excitation of the linear mean-field-hydrodynamic equations, as suggested recently for pure bosons. We study the free expansion of these dark solitons as well as the consequent increase in the size of their central notch and discuss the possibility of experimental observation of the notch after free expansion.
Resumo:
We investigate the mixing-demixing transition and the collapse in a quasi-two-dimensional degenerate boson-fermion mixture (DBFM) with a bosonic vortex. We solve numerically a quantum-hydrodynamic model based on a new density functional which accurately takes into account the dimensional crossover. It is demonstrated that with the increase of interspecies repulsion, a mixed state of DBFM could turn into a demixed state. The system collapses for interspecies attraction above a critical value which depends on the vortex quantum number. For interspecies attraction just below this critical limit there is almost complete mixing of boson and fermion components. Such mixed and demixed states of a DBFM could be experimentally realized by varying an external magnetic field near a boson-fermion Feshbach resonance, which will result in a continuous variation of interspecies interaction.
Resumo:
A new mechanism for understanding small neutrino masses using only simple new physics at the TeV scale is proposed. As an application, it is shown how it can naturally lead to the mass hierarchy of the so-called bimaximal mixing in the case of three active neutrinos, or to the 3 + 1 scenario with a sterile neutrino, using only the SU(2)(L) quantum numbers of the particles. (C) 2001 Elsevier B.V. BN. All rights reserved.
Resumo:
In this work we show that in a version of the 3-3-1 model proposed by Duong and Ma, in which the introduction of a scalar sextet is avoided by adding a singlet heavy charged lepton, the tau lepton gains mass through a seesawlike mechanism. We also show how to generate neutrino masses at the one-loop level, and give the respective Maki-Nakagawa-Sakata mixing matrices for a set of the parameters. We also consider the effect of adding a singlet right-handed neutrino.
Resumo:
Some years ago it was shown by Ma that in the context of the electroweak standard model there are, at the tree level, only three ways to generate small neutrino masses by the seesaw mechanism via one effective dimension-five operator. Here we extend this approach to 3-3-1 chiral models showing that in this case there are several dimension-five operators and we also consider their tree level realization.
Resumo:
We establish constraints on a general four-fermion contact interaction from precise measurements of electroweak parameters. We compute the one-loop contribution for the leptonic Z width, anomalous magnetic, weak-magnetic, electric and weak dipole moments of leptons in order to extract bounds on the energy scale of these effective interactions.
Resumo:
We show that in any invisible axion model due to the effects of effective nonrenormalizable interactions related to an energy scale near the Peccei-Quinn, grand unification or even the Planck scale, active neutrinos necessarily acquire masses in the sub-eV range. Moreover, if sterile neutrinos are also included and if appropriate cyclic Z(N) symmetries are imposed, it is possible that some of these neutrinos are heavy while others are light.
Resumo:
We present the results of a search for the production of an excited state of the muon, mu(*), in proton antiproton collisions at root s =1.96 TeV. The data have been collected with the D0 experiment at the Fermilab Tevatron Collider and correspond to an integrated luminosity of approximately 380 pb(-1). We search for mu(*) in the process p (p) over bar ->mu(*)mu, with the mu(*) subsequently decaying to a muon plus photon. No excess above the standard model expectation is observed in data. Interpreting our data in the context of a model that describes mu(*) production by four-fermion contact interactions and mu(*) decay via electroweak processes, we set a 95% confidence level production cross section upper limit ranging from 0.057 to 0.112 pb, depending on the mass of the excited muon. Choosing the scale for contact interactions to be Lambda=1 TeV, excited muon masses below 618 GeV are excluded.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We consider a dynamical model of a superfluid Fermi gas in the Bardeen-Cooper-Schrieffer regime trapped in a periodic optical lattice (OL) potential. The model is based on an equation for complex order parameter phi of the superfluid, which is derived from the relevant energy density and includes a self-repulsive term similar to phi(7/3). By means of the variational approximation (VA) and numerical simulations, we find families of stable one- and two-dimensional (I D and 2D) gap solitons (GSs) in this model. Chiefly, they are compact objects trapped in a single cell of the OL. Families of stable even and odd bound states of these GSs are also found in one dimension. A 3D GS family is constructed too, but solely within the framework of the VA. In the linear limit, the VA predicts an almost exact position of the left edge of the first band-gap in the OL-induced spectrum. The full VA provides an accurate description of families of I D and 2D fundamental GSs. We also demonstrate that a I D GS can be safely transported by an OL moving at a moderate velocity. (C) 2009 IMACS. Published by Elsevier B.V. All rights reserved.