69 resultados para fat absorption
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We have focused on the optical absorption edge of nanocrystalline Ga(1-x)Mn(x)N (0.00 <= x <= 0.18) films deposited by reactive RF magnetron sputtering. The films obtained are nanocrystalline with grain sizes of about 25 nm, having wurtzite structure and strong orientation texture in the c-axis direction. The optical characterizations of the absorption edges were obtained in the 190-2600 nm spectral range. The increase of the Mn content causes an increase of the absorption coefficient which can be clearly noticed at low energies, and a quasi-linear decrease of the optical gap. Broad absorption bands observed around similar to 1.3 and similar to 2.2 eV were associated with transitions between the Mn acceptor level and the valence and conduction bands, respectively. The observed changes in the optical properties due to the Mn incorporation observed in these nanocrystalline films are similar to those reported for ferromagnetic GaMnN single-crystal films.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The absorption edge and the bandgap transition of sol-gel-dip-coating SnO2 thin films, deposited on quartz substrates, are evaluated from optical absorption data and temperature dependent photoconductivity spectra. Structural properties of these films help the interpretation of bandgap transition nature, since the obtained nanosized dimensions of crystallites are determinant on dominant growth direction and, thus, absorption energy. Electronic properties of the bulk and (110) and (101) surfaces are also presented, calculated by means of density functional theory applied to periodic calculations at B3LYP hybrid functional level. Experimentally obtained absorption edge is compared to the calculated energy band diagrams of bulk and (110) and (101) surfaces. The overall calculated electronic properties in conjunction with structural and electro-optical experimental data suggest that the nature of the bandgap transition is related to a combined effect of bulk and (101) surface, which presents direct bandgap transition.
Resumo:
Oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption have been deposited by reactive sputtering using a planar diode radio frequency magnetron configuration. It is observed that the increase in the absorption coefficient is more effective when the O-2 gas supply is periodically interrupted rather than by a decrease of the partial O-2 gas pressure in the deposition plasma. The optical absorption coefficient at 1.5 eV increases from about 1 x 10(2) cm(-1) to more than 4 x 10(3) cm(-1) as a result of the gas flow discontinuity. A red-shift of similar to 0.24 eV in the optical absorption edge is also observed. High resolution transmission electron microscopy with composition analysis shows that the films present a dense columnar morphology, with estimated mean column width of 40nm. Moreover, the interruptions of the O-2 gas flow do not produce detectable variations in the film composition along its growing direction. X-ray diffraction and micro-Raman experiments indicate the presence of the TiO2 anatase, rutile, and brookite phases. The anatase phase is dominant, with a slight increment of the rutile and brookite phases in films deposited under discontinued O-2 gas flow. The increase of optical absorption in the visible and near-infrared regions has been attributed to a high density of defects in the TiO2 films, which is consistent with density functional theory calculations that place oxygen-related vacancy states in the upper third of the optical bandgap. The electronic structure calculation results, along with the adopted deposition method and experimental data, have been used to propose a mechanism to explain the formation of the observed oxygen-related defects in TiO2 thin films. The observed increase in sub-bandgap absorption and the modeling of the corresponding changes in the electronic structure are potentially useful concerning the optimization of efficiency of the photocatalytic activity and the magnetic doping of TiO2 films. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4724334]
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The present study examines the effects of caloric restriction in cardiac tissue evaluation markers of oxidative stress. High-fat dietary restrictions can have a long-term impact on cardiac health. Dietary restriction of control diet increased myocardial superoxide dismutase (SOD) and catalase activities. Dietary restriction of fatty acid-enriched diets increased myocardial lipoperoxide concentrations, while SOD activity was decreased in cardiac tissue of rats with dietary restriction of fatty acid-enriched diets. Dietary restriction of unsaturated fatty acid-enriched diet induced the highest lipoperoxide concentration and the lowest myocardial SOD activity. Dietary restriction of unsaturated fatty acid decreased myocardial glycogen, and increased the lactate dehydrogenase/citrate synthase ratio. Dietary restriction of fatty acid-enriched diets were more deleterious to cardiac tissue than normal ad lib.-fed diet. In conclusion, the effects of caloric restriction on myocardial oxidative stress is dependent on which nutrient is restricted. Dietary restriction of fatty acid-enriched diets is deleterious relative to ad lib.-fed chow diet. (C) 2002 Elsevier, Science Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objective. to evaluate anthropometric indicators of body fat and their association with metabolic risk markers in postmenopausal women.Methods. A cross-sectional study with 80 Brazilian women (40-70 years) was carried out. Body mass index (BMI = weight/height(2)), waist circumference (WC) and waist-to-hip ratio (WHR) were obtained for anthropometric evaluation. Trunk fat mass (TFM) was measured by dual-energy X-ray absorptiometry. The following metabolic variables were evaluated: total cholesterol (TC), HDL, LDL, triglycerides (TG), as well as glycemia and insulin to determine insulin resistance (HOMA-IR).Results. Overweight and obesity were observed in 81% of the women. Values of WC >88 cm were observed in 68.5% of the women. on average, TC, LDL and TG levels were above normal levels in 60, 50 and 42.5% of the women, respectively; and HDL was normal in 82.5%. IR was observed in 37.5% of the women. Positive correlations were found between anthropometric indicators and TFM (P < 0.05). WC was most correlated with TFM (r = 0.92), followed by BMI (r = 0.88) and by WHR (r = 0.48; P < 0.05). All anthropometric indicators and TFM showed significant negative correlations with HDL and significant positive correlations with HOMA-IR (P < 0.05). Only WHR was significantly associated with dysglycemia (R(2) = 12%), hypertriglyceridemia (R(2) = 17%) and decreased HDL (R(2) = 27%). WC was significantly associated with HOMA-IR (R(2) = 34%).Conclusion. WC and WHR are anthropometric measures that showed strong correlation with TFM and with metabolic risk markers in postmenopausal women.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)