205 resultados para epoxy resins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber reinforced polymer composites have been widely applied in the aeronautical field. However, composite processing, which uses unlocked molds, should be avoided in view of the tight requirements and also due to possible environmental contamination. To produce high performance structural frames meeting aeronautical reproducibility and low cost criteria, the Brazilian industry has shown interest to investigate the resin transfer molding process (RTM) considering being a closed-mold pressure injection system which allows faster gel and cure times. Due to the fibrous composite anisotropic and non homogeneity characteristics, the fatigue behavior is a complex phenomenon quite different from to metals materials crucial to be investigated considering the aeronautical application. Fatigue sub-scale specimens of intermediate modulus carbon fiber non-crimp multi-axial reinforcement and epoxy mono-component system composite were produced according to the ASTM 3039 D. Axial fatigue tests were carried out according to ASTM D 3479. A sinusoidal load of 10 Hz frequency and load ratio R = 0.1. It was observed a high fatigue interval obtained for NCF/RTM6 composites. Weibull statistical analysis was applied to describe the failure probability of materials under cyclic loads and fractures pattern was observed by scanning electron microscopy. (C) 2010 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A major difficulty to achieve maximum weight savings in the manufacture of composite structural components, is the tendency of these materials have the formation of voids and cracks in the interior and surface components. In aeronautical applications, controlling the volume fraction of fibers, resins and empty the components of composite is very hard. In this work, composites of epoxy matrix RTM6 reinforced with NCF (non crimp fabric carbon) processed by resin transfer molding (RTM) were characterized for porosity (P-ap) and density (rho(ad)). We used a method based on Archimedes' principle (ASTM C830) and the technique of helium pycnometer. The porosity values were compared with those determined by acid digestion (ASTM D3171). The mechanical properties of processed composites was evaluated by testing on the performing flexural and the results were correlated with the porosity value. All techniques tested to determine void content are satisfactory. The differents results can be justified for heterogeneous void distribution on laminate and differences among techniques characteristics. (C) 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-isothermal dielectric analysis (DEA) and differential scanning calorimetry (DSC) techniques were used to study the epoxy nanocomposites prepared by reacting 1,3,5,7,9,11,13,15-octa[dimethylsiloxypropylglycidylether] pentaciclo [9.5.1.1(3,9).1(5,15).1(7,13)] octasilsesquioxane (ODPG) with methylenedianiline (MDA). Loss factor (epsilon) and activation energy were calculated by DEA. The relationships between the loss factor, the activation energy, the structure of the network, and the mechanical properties were investigated. Activation energies determined by DEA and DSC, heat of polymerization, fracture toughness and tensile modulus show the same profile for mechanical properties with respect to ODPG content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the large number of studies addressing the effect of microwave polymerization on the properties of acrylic resin, this method has received limited clinical acceptance. This study evaluated the influence of microwave polymerization on the flexural strength of a denture base resin. A conventional heat-polymerized (Classico), a microwave-polymerized (Onda-Cryl) and a autopolymerizing acrylic (Jet) resins were used. Five groups were established, according to polymerization cycles: A, B and C (Onda-Cryl, short cycle - 500W/3 min, long - 90W/13 min + 500W/90 see, and manufacturing microwave cycle - 320W/3 min + OW/3 min + 720W/3 min); T(Classico, water bath cycle - 74 degrees C/9h) and Q (Jet, press chamber cycle - 50 degrees C/15 min at 2 bar). Ten specimens (65 x 10 x 3.3 mm) were prepared for each cycle. The flexural strength of the five groups was measured using a three-point bending test at a cross-head speed of 5 mm/min. Flexural strength values were analyzed by one-way ANOVA and the Tukey's test was performed to identify the groups that were significantly different at 5% level. The microwave-polymerized groups showed the highest means (p<0.05) for flexural strength (MPa) (A = 106.97 +/- 5.31; B = 107.57 +/- 3.99; C = 109.63 +/- 5.19), and there were no significant differences among them. The heat-polymerized group (T) showed the lowest flexural strength means (84.40 +/- 1.68), and differ significantly from all groups. The specimens of a microwavable denture base resin could be polymerized by different microwave cycles without risk of decreasing the flexural strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to verify the influence of surface sealants on the surface roughness of resin composite restorations before and after mechanical toothbrushing, and evaluate the superficial topography using atomic force microscope. Five surface sealers were used: Single Bond, Opti Bond Solo Plus, Fortify, Fortify Plus and control, without any sealer agent. The lowest values of surface roughness were obtained for control, Single Bond and Fortify groups before toothbrushing. Fortify and Fortify Plus were the sealer agents that support the abrasive action caused by the toothbrushing although Fortify Plus group remained with high values of surface roughness. The application of specific surface sealants could be a useful clinical procedure to maintain the quality of resin-based composite restorations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two high-performance liquid chromatographic methods for determination of residual monomer in dental acrylic resins are described. Monomers were detected by their UV absorbance at 230 nm, on a Nucleosil((R)) C-18 (5 mu m particle size, 100 angstrom pore size, 15 x 0.46 cm i.d.) column. The separation was performed using acetonitrile-water (55:45 v/v) containing 0.01% triethylamine (TEA) for methyl methacrylate and butyl methacrylate, and acetonitrile-water (60:40 v/v) containing 0.01% TEA for isobutyl methacrylate and 1,6-hexanediol dimethacrylate as mobile phases, at a flow rate of 0.8 mL/min. Good linear relationships were obtained in the concentration range 5.0-80.0 mu g/mL for methyl methacrylate, 10.0-160.0 mu g/mL for butyl methacrylate, 50.0-500.0 mu g/mL for isobutyl methacrylate and 2.5-180.0 mu g/mL for 1,6-hexanediol dimethacrylate. Adequate assay for intra- and inter-day precision and accuracy was observed during the validation process. An extraction procedure to remove residual monomer from the acrylic resins was also established. Residual monomer was obtained from broken specimens of acrylic disks using methanol as extraction solvent for 2 h in an ice-bath. The developed methods and the extraction procedure were applied to dental acrylic resins, tested with or without post-polymerization treatments, and proved to be accurate and precise for the determination of residual monomer content of the materials evaluated. Copyright (c) 2005 John Wiley & Sons, Ltd.