40 resultados para emission time


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: The aim of this study was to assess the influence of curing time and power on the degree of conversion and surface microhardness of 3 orthodontic composites. Methods: One hundred eighty discs, 6 mm in diameter, were divided into 3 groups of 60 samples according to the composite used-Transbond XT (3M Unitek, Monrovia, Calif), Opal Bond MV (Ultradent, South Jordan, Utah), and Transbond Plus Color Change (3M Unitek)-and each group was further divided into 3 subgroups (n = 20). Five samples were used to measure conversion, and 15 were used to measure microhardness. A light-emitting diode curing unit with multiwavelength emission of broad light was used for curing at 3 power levels (530, 760, and 1520 mW) and 3 times (8.5, 6, and 3 seconds), always totaling 4.56 joules. Five specimens from each subgroup were ground and mixed with potassium bromide to produce 8-mm tablets to be compared with 5 others made similarly with the respective noncured composite. These were placed into a spectrometer, and software was used for analysis. A microhardness tester was used to take Knoop hardness (KHN) measurements in 15 discs of each subgroup. The data were analyzed with 2 analysis of variance tests at 2 levels. Results: Differences were found in the conversion degree of the composites cured at different times and powers (P < 0.01). The composites showed similar degrees of conversion when light cured at 8.5 seconds (80.7%) and 6 seconds (79.0%), but not at 3 seconds (75.0%). The conversion degrees of the composites were different, with group 3 (87.2%) higher than group 2 (83.5%), which was higher than group 1 (64.0%). Differences in microhardness were also found (P < 0.01), with lower microhardness at 8.5 seconds (35.2 KHN), but no difference was observed between 6 seconds (41.6 KHN) and 3 seconds (42.8 KHN). Group 3 had the highest surface microhardness (35.9 KHN) compared with group 2 (33.7 KHN) and group 1 (30.0 KHN). Conclusions: Curing time can be reduced up to 6 seconds by increasing the power, with a slight decrease in the degree of conversion at 3 seconds; the decrease has a positive effect on the surface microhardness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New Yb3+, Er3+ and Tm3+ doped fluoro-phosphate glasses belonging to the system NaPO3–YF3–BaF2–CaF2 and containing up to 10 wt% of rare-earth ion fluorides were prepared and characterized by differential scanning calorimetry, absorption spectroscopy and up-conversion emission spectroscopy under excitation with a 975 nm laser diode. Transparent and homogeneous glass-ceramics have been reproducibly obtained with a view to manage the red, green and blue emission bands and generate white light. X-ray diffraction as well as electron microscopy techniques have confirmed the formation of fluorite-type cubic nanocrystals at the beginning of the crystallization process while complex nanocrystalline phases are formed after a longer heat-treatment. The prepared glass-ceramics exhibit high optical transparency even after 170 h of thermal treatment. An improvement of up-conversion emission intensity – from 10 to 160 times larger – was measured in the glass-ceramics when compared to the parent glass, suggesting an important incorporation of the rare-earth ions into the crystalline phase(s). The involved mechanisms and lifetime were described in detail as a function of heat-treatment time. Finally, a large range of designable color rendering (from orange to turquoise through white) can be observed in these materials by controlling the laser excitation power and the crystallization rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The grinding operation gives workpieces their final finish, minimizing surface roughness through the interaction between the abrasive grains of a tool (grinding wheel) and the workpiece. However, excessive grinding wheel wear due to friction renders the tool unsuitable for further use, thus requiring the dressing operation to remove and/or sharpen the cutting edges of the worn grains to render them reusable. The purpose of this study was to monitor the dressing operation using the acoustic emission (AE) signal and statistics derived from this signal, classifying the grinding wheel as sharp or dull by means of artificial neural networks. An aluminum oxide wheel installed on a surface grinding machine, a signal acquisition system, and a single-point dresser were used in the experiments. Tests were performed varying overlap ratios and dressing depths. The root mean square values and two additional statistics were calculated based on the raw AE data. A multilayer perceptron neural network was used with the Levenberg-Marquardt learning algorithm, whose inputs were the aforementioned statistics. The results indicate that this method was successful in classifying the conditions of the grinding wheel in the dressing process, identifying the tool as "sharp''(with cutting capacity) or "dull''(with loss of cutting capacity), thus reducing the time and cost of the operation and minimizing excessive removal of abrasive material from the grinding wheel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Atmospheric particulate matter (PM) is genotoxic and recently was classified as carcinogenic to humans by the International Agency for Research on Cancer. PM chemical composition varies depending on source and atmospheric conditions. The Salmonella/microsome assay is the most used mutagenicity test and can identify the major chemical classes responsible for observed mutagenicity. The objective of this work was to characterize the mutagenicity of PM samples from a countryside city, Limeira, Brazil, which is influenced by heavy traffic and sugar cane biomass burning. Six samples of total PM were collected. Air mass backward trajectories were calculated. Organic extracts were assayed using the Salmonella/microsome microsuspension mutagenicity assay using TA98, YG1041, and TA1538, with and without metabolic activation (S9). YG1041 was the most sensitive strain and mutagenicity reached 9,700 revertants per m(3) without metabolic activation. Potency for TA1538 was higher than TA98, indicating that this strain should be considered in air mutagenicity studies. The increased response to YG1041 relative to TA98, and the decreased response with S9, suggests that nitroaromatics are the major contributors. Limeira is among the most mutagenic cities in the world. High mutagenicity in Limeira seems to occur when the air mass from the area of sugarcane production is mixed with air from the region impacted by anthropogenic activities such as traffic. An increase in the formation of nitro-polycyclic aromatic hydrocarbons may result from longer contact time between the aromatic compounds and the atmosphere with high NOx and ozone concentration, although more studies are required to confirm this hypothesis. Environ. Mol. Mutagen., 2015. © 2015 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sclerotia of Sclerotinia sclerotiorum (Ss) can survive for long time in soil and are the main inoculum source of the white mold disease. An alternative for reducing this inoculum is the use of parasites, such as Coniothyrium minitans (Cm). We evaluated the potential of Cm isolates for the biological control of Ss in beans. The effect of the temperature on the growth of 15 isolated of Cm was evaluated in vitro. The hyperparasitism ability of Cm was evaluated in soil infested with sclerotia and conditioned in pots. The infested soil was treated with conidia suspension of the antagonists, fluazinan or sterile distilled water. After seven days at 20°C, the sclerotia were removed from soil and placed inside Petri dishes over bean leaves previously disinfested. The germination and parasitism of sclerotia were evaluated after 7 to 10 days. To evaluate the apothecia emission, soil infested with sclerotia of Ss and treated as described was maintained at 18°C and the number of emerged apothecia was counted up to 84 days after inoculation. The emergence of bean plants in soil infested with sclerotia and mycelium of the pathogen and treated as described was evaluated in greenhouse. The ideal temperature for growth of Cm isolates varied from 18 to 19°C and at 30-35°C they were complete inhibited. The isolates of Cm promoted less than 10% of reduction in viability of the sclerotia, but they significantly reduced the emission of apothecia. Two isolates increased the emergence of plants in relation to the inoculated check, but was significantly lower than the non-inoculated check. Field tests will be conduct to confirm the potential of the selected isolates to reduce the inoculum source of the pathogen.