60 resultados para electronic educational and methodological complex
Resumo:
Langmuir-Blodgett (LB) technique is a powerful tool to fabricate ultrathin films with highly ordered structures and controllable molecular array for efficient energy and electron transfer, allowing the construction of devices at molecular level. One method to obtain LB films consists in the mixture of classical film-forming molecules, for example Stearic Acid (SA) and functional metal complex. In this work NH(4)[Eu(bmdm)(4)], where the organic ligand bmdm is (butyl methoxy-dibenzoyl-methane) or (1-(4-methoxyphenyl)-3-(4-tert-butylphenyl)propane-1,3-dione) was used to build up Langmuir and LB films. Langmuir isotherms were obtained from (i) NH(4)[Eu(bmdm)(4)] complex and (ii) NH(4)[Eu(bmdm)(4)]/SA (1:1). Results indicated that (i) form multilayer structure; however the surface pressure was insufficient to obtain LB films, and (ii) can easily reproduce and build LB films. The dependence of number of layers in the UV absorption spectra suggest that the complex did not hydrolyze or show decomposition, UV spectral differences observed between the solution and the LB film indicate that the complex has a highly ordered arrangement in the film and the complex has an interaction with SA. Excitation spectra confirm a ligand-europium energy transfer mechanism. The transition lines of Eu(3+) ion were observed in emission spectra of all films, the photoluminescence spectra indicate a fluorescence enhanced effect with the number of LB layers. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Newborn infants exposed to preeclampsia (PE) present increased short-term morbidity, mainly respiratory diseases such as respiratory distress syndrome and bronchopulmonary dysplasia. Gastrointestinal problems are also frequent, although a higher risk of necrotizing enterocolitis has not been confirmed. These problems could be related not just to PE itself but also to prematurity or intrauterine growth restriction, which frequently occur in this maternal disease. Other findings, however, seem to be due to the direct effect of the maternal disease; these findings include an increased frequency of neutropenia and thrombocytopenia and a lower incidence of cerebral disorders, such as periventricularintraventricular hemorrhage and cerebral palsy. The evaluation of long-term outcome shows increasing evidence that PE has important implications for the future health of the mother and her child, suggesting that PE is not a simple gestational disorder but a clinical syndrome with an unclear etiology, a genetic component, and a complex pathophysiology. This syndrome involves important maternal and fetal vascular alterations that can persist and cause diseases in later life. The divergence in results on outcomes for children exposed to PE could, in part, be due to methodological differences in the studies, most of which are retrospective case-control studies. Better evidence on prognosis is obtained from cohort studies. Even in the cohort studies, differences in patient characteristics and severity of maternal disease, as well as sample size, follow-up time, and main outcome measures certainly contribute to the variability in results reported in the literature. © 2012 by the American Academy of Pediatrics. All rights reserved.
Resumo:
The self-assembly of short amino acid chains appears to be one of the most promising strategies for the fabrication of nanostructures. Their solubility in water and the possibility of chemical modification by targeting the amino or carboxyl terminus give peptide-based nanostructures several advantages over carbon nanotube nanostructures. However, because these systems are synthesized in aqueous solution, a deeper understanding is needed on the effects of water especially with respect to the electronic, structural and transport properties. In this work, the electronic properties of l-diphenylalanine nanotubes (FF-NTs) have been studied using the Self-Consistent Charge Density-Functional-based Tight-Binding method augmented with dispersion interaction. The presence of water molecules in the central hydrophilic channel and their interaction with the nanostructures are addressed. We demonstrate that the presence of water leads to significant changes in the electronic properties of these systems decreasing the band gap which can lead to an increase in the hopping probability and the conductivity. © the Owner Societies 2013.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Educação Escolar - FCLAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Geografia - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Educação Escolar - FCLAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)