49 resultados para continuum thermodynamics
Resumo:
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Resumo:
As it follows from the classical analysis, the typical final state of a dark energy universe where a dominant energy condition is violated is a finite-time, sudden future singularity (a big rip). For a number of dark energy universes (including scalar phantom and effective phantom theories as well as specific quintessence models) we demonstrate that quantum effects play the dominant role near a big rip, driving the universe out of a future singularity (or, at least, moderating it). As a consequence, the entropy bounds with quantum corrections become well defined near a big rip. Similarly, black hole mass loss due to phantom accretion is not so dramatic as was expected: masses do not vanish to zero due to the transient character of the phantom evolution stage. Some examples of cosmological evolution for a negative, time-dependent equation of state are also considered with the same conclusions. The application of negative entropy (or negative temperature) occurrence in the phantom thermodynamics is briefly discussed.
Resumo:
This work describes a method to determine Cu at wide range concentrations in a single run without need of further dilutions employing high-resolution continuum source flame atomic absorption spectrometry. Different atomic lines for Cu at 324. 754 nm, 327. 396 nm, 222. 570 nm, 249. 215 nm and 224. 426 nm were evaluated and main figures of merit established. Absorbance measurements at 324. 754 nm, 249. 215 nm and 224. 426 nm allows the determination of Cu in the 0. 07-5. 0 mg L -1, 5. 0-100 mg L -1 and 100-800 mg L -1 concentration intervals respectively with linear correlation coefficients better than 0. 998. Limits of detection were 21 μg L -1, 310 μg L -1 and 1400 μg L -1 for 324. 754 nm, 249. 215 nm and 224. 426 nm, respectively and relative standard deviations (n = 12) were ≤ 2. 7%. The proposed method was applied to water samples spiked with Cu and the results were in agreement at a 95% of confidence level (paired t-test) with those obtained by line-source flame atomic absorption spectrometry.
Resumo:
The concept of entransy was recently proposed in terms of the analogy to the electric energy stored in a capacitor. The entransy of a system describes its heat transfer ability, as the exergy of a system quantifies its work production potential. Hence, the concept of entransy can be useful in problems where the heat transfer is the main objective, as for example, in systems collecting solar energy. This concept is quite recent and there are only a few works related to this topic. It is expected, however, that this approach will soon be used more often in the analysis of problems in thermodynamics and heat transfer. The objective of this work is to present a review of the concept of entransy in a systematic way, beginning with its definition, balance equations and a few examples of simple applications. It is hoped that this concept of entransy becomes a useful tool in the analysis and design of more efficient thermal systems. © 2012 Praise Worthy Prize S.r.l.- All rights reserved.
Resumo:
The dynamics of the AFM-atomic force microscope follows a model based in a Timoshenko cantilever beam with a tip attached at the free end and acting with the surface of a sample. General boundary conditions arise when the tip is either in contact or non-contact with the surface. The governing equations are given in matrix conservative form subject to localized loads. The eigenanalysis is done with a fundamental matrix response of a damped second-order matrix differential equation. Forced responses are found by using a Galerkin approximation of the matrix impulse response. Simulations results with harmonic and pulse forcing show the filtering character and the effects of the tip-sample interaction at the end of the beam. © 2012 American Institute of Physics.
Resumo:
Tuberculosis remains as one of the main cause of mortality worldwide due to a single infectious agent, Mycobacterium tuberculosis. The aroK-encoded M. tuberculosis Shikimate Kinase (MtSK), shown to be essential for survival of bacilli, catalyzes the phosphoryl transfer from ATP to the carbon-3 hydroxyl group of shikimate (SKH), yielding shikimate-3-phosphate and ADP. Here we present purification to homogeneity, and oligomeric state determination of recombinant MtSK. Biochemical and biophysical data suggest that the chemical reaction catalyzed by monomeric MtSK follows a rapid-equilibrium random order of substrate binding, and ordered product release. Isothermal titration calorimetry (ITC) for binding of ligands to MtSK provided thermodynamic signatures of non-covalent interactions to each process. A comparison of steady-state kinetics parameters and equilibrium dissociation constant value determined by ITC showed that ATP binding does not increase the affinity of MtSK for SKH. We suggest that MtSK would more appropriately be described as an aroL-encoded type II shikimate kinase. Our manuscript also gives thermodynamic description of SKH binding to MtSK and data for the number of protons exchanged during this bimolecular interaction. The negative value for the change in constant pressure heat capacity (ΔCp) and molecular homology model building suggest a pronounced contribution of desolvation of non-polar groups upon binary complex formation. Thermodynamic parameters were deconvoluted into hydrophobic and vibrational contributions upon MtSK:SKH binary complex formation. Data for the number of protons exchanged during this bimolecular interaction are interpreted in light of a structural model to try to propose the likely amino acid side chains that are the proton donors to bulk solvent following MtSK:SKH complex formation. © 2013 Rosado et al.
Resumo:
The wavelength-integrated absorbance (WIA) and summation of absorbance (∑ lines) of different lines were evaluated to enhance sensitivity and determine B, P and S in medicinal plants by HR-CS FAAS. The lowest LOD for B (0.5mgL-1) and P (13.7mgL-1) was obtained by integration of lines 249.773nm (3pixels) and 247.620nm (5pixels), respectively. The ∑ lines for CS at 257.595nm and 257.958nm furnished LOD=30.5mgL-1, ca. 10% lower than the LOD obtained for the WIA using 257.595nm and 5pixels. Data showed the advantage of WIA over ∑ lines to improve sensitivity for all analytes. Under optimized conditions, calibration curves in the 1.0-100mgL-1 B and 50.0-2000mgL-1 P, S ranges were consistently obtained. Results obtained with the HR-CS FAAS method were in agreement at 98% and 95% confidence level with certified values for B and P, respectively. And results for S were in accordance to non-certified values. Concentrations of B, P, and S in 12 medicinal plants analyzed by the proposed method varied within the 19.4-34.5mgkg-1 B, 719-3910mgkg-1 P and 1469-7653mgkg-1 S ranges. © 2012 Elsevier B.V.
Resumo:
Pós-graduação em Filosofia - FFC
Resumo:
Pós-graduação em Ciências Sociais - FFC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A continuidade categorial é uma propriedade indiscutível da linguagem para a tradição funcionalista, que a trata como um verdadeiro universal linguístico. Além de buscar evidência sistemática para a comprovação desse axioma, o principal objetivo deste trabalho é analisar a estrutura argumental da nominalização, num esforço concentrado por demonstrar que esse mesmo princípio universal é metodologicamente útil e teoricamente válido para postular relações intralinguísticas de continuidade categorial mesmo entre classes aparentemente discretas como as de substantivo e verbo. A trajetória percorrida para a sustentação da hipótese da continuidade categorial passa necessariamente pela comprovação de uma hipótese secundária, a de preservação de valência, postulada por Dik (1985; 1997), segundo a qual a estrutura argumental é parte constitutiva da nominalização. Essa busca não teria êxito se a trajetória percorrida não utilizasse um atalho necessário, representado pela teoria prototípica de categorização. De fato, postular a existência de categorias intermediárias, como a de nominalização, implica necessariamente a existência de membros mais prototípicos de uma categoria. A existência de estrutura argumental, que sinaliza a representação de entidades de ordem superior, permite aproximar a nominalização de membros não-prototípicos da categoria dos verbos como formas não-finitas, enquanto a ausência de estrutura argumental, que sinaliza a representação de uma entidade de primeira ordem, permitiu aproximá-lo de membros prototípicos da categoria dos substantivos
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)