76 resultados para chiral symmetry restoration
Resumo:
We assume that the nuclear potential for distances larger than 2.5 fm is given just by the exchanges of one and two pions and, for the latter, we adopt a model based on chiral symmetry and subthreshold pion-nucleon amplitudes, which contains no free parameters. The predictions produced by this model for nucleon-nucleon observables are calculated and shown to agree well with both experiment and those due to phenomenological potentials.
Resumo:
A one parameter model of a confined-gluon propagator has been formulated by Frank and Roberts recently, which has a great success explaining π - and p - meson observables. We show, computing few chiral parameters, that a small variation of this model considering an infrared finite gluon propagator with a dynamically generated gluon mass, can also fit data related to the chiral symmetry breaking. This allows a direct interpretation for the unique parameter involved in the model as the gluon mass scale. © 1998 Elsevier Science B.V. All rights reserved.
Resumo:
We show that the implementation of chiral symmetry in recent studies of the hadron spectrum in the context of the constituent quark model is inconsistent with chiral perturbation theory. In particular, we show that the leading nonanalytic (LNA) contributions to the hadron masses are incorrect in such approaches. The failure to implement the correct chiral behaviour of QCD results in incorrect systematics for the corrections to the masses. © 1999 Published by Elsevier Science B.V. All rights reserved.
Resumo:
We investigate the low-energy elastic D̄N interaction using a quark model that confines color and realizes dynamical chiral symmetry breaking. The model is defined by a microscopic Hamiltonian inspired in the QCD Hamiltonian in Coulomb gauge. Constituent quark masses are obtained by solving a gap equation, and baryon and meson bound-state wave functions are obtained using a variational method. We derive a low-energy meson-nucleon potential from a quark-interchange mechanism whose ingredients are the quark-quark and quark-antiquark interactions and baryon and meson wave functions, all derived from the same microscopic Hamiltonian. The model is supplemented with (σ, ρ, ω, a0) single-meson exchanges to describe the long-range part of the interaction. Cross sections and phase shifts are obtained by iterating the quark-interchange plus meson-exchange potentials in a Lippmann-Schwinger equation. Once coupling constants of long-range scalar σ and a0 meson exchanges are adjusted to describe experimental phase shifts of the K+N and K0N reactions, predictions for cross sections and s-wave phase shifts for the D̄0N and D-N reactions are obtained without introducing new parameters. © 2013 American Physical Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The covariant quark model of the pion based on the effective nonlocal quark-hadron Lagrangian involving nonlocality induced by instanton fluctuations of the QCD vacuum is reviewed. Explicit gauge invariant formalism allows us to construct the conserved vector and axial currents and to demonstrate their consistency with the Ward-Takahashi identities and low-energy theorems. The spontaneous breaking of chiral symmetry results in the dynamic quark mass and the vertex of the quark-pion interaction, both momentum-dependent. The parameters of the instanton vacuum, the average size of the instantons, and the effective quark mass are expressed in terms of the vacuum expectation values of the lowest dimension quark-gluon operators and low-energy pion observables. The transition pion form factor for the processes gamma*gamma --> pi (0) and gamma*gamma* --> pi (0) is analyzed in detail. The kinematic dependence of the transition form factor at high momentum transfers allows one to determine the relationship between the light-cone amplitude of the quark distribution in the pion and the quark-pion vertex function. Its dynamic dependence implies that the transition form factor gamma*gamma --> pi (0) at high momentum transfers is acutely sensitive to the size of the nonlocality of nonperturbative fluctuations in the QCD vacuum. In the leading twist, the distribution amplitude and the distribution function of the valence quarks in the pion are calculated at a low normalization point of the order of the inverse average instanton size rho (-1)(c). The QCD results are evolved to higher momentum transfers and are in reasonable agreement with available experimental data on the pion structure.
Resumo:
Using the chiral symmetry, we calculated the dominant contribution to the nucleon - nucleon potential due to the exchange of three non-correlated pions. This contribution is isovetor with pseudoscalar and axial components. The pseudoscalar component is dominant, it has a range of 1.0 fm and it contributes in the pion channel.
Resumo:
In this talk we report on recent progress in implementing exchange terms in the quark-meson coupling model. Exchange effects are related to the Pauli exclusion principle. We discuss exchange effects at the nucleon level and at the quark level. We also address the incorporation of chiral symmetry and Delta degrees of freedom in the model.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study the low-energy scattering of charmed (D) and strange (K) mesons by nucleons. The short-distance part of the interaction is due to quark-gluon interchanges derived from a model that realizes dynamical chiral symmetry breaking and confines color. The quark-gluon interaction incorporates a confining Coulomb-like potential extracted from lattice QCD simulations in Coulomb gauge and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. The long-distance part of the interaction is due to single vector (rho, omega) and scalar (sigma) meson exchanges. We show results for scattering cross-sections for isospin I = 0 and I = 1.
Resumo:
Traditional cutoff regularization schemes of the Nambu-Jona-Lasinio model limit the applicability of the model to energy-momentum scales much below the value of the regularizing cutoff. In particular, the model cannot be used to study quark matter with Fermi momenta larger than the cutoff. In the present work, an extension of the model to high temperatures and densities recently proposed by Casalbuoni, Gatto, Nardulli, and Ruggieri is used in connection with an implicit regularization scheme. This is done by making use of scaling relations of the divergent one-loop integrals that relate these integrals at different energy-momentum scales. Fixing the pion decay constant at the chiral symmetry breaking scale in the vacuum, the scaling relations predict a running coupling constant that decreases as the regularization scale increases, implementing in a schematic way the property of asymptotic freedom of quantum chromodynamics. If the regularization scale is allowed to increase with density and temperature, the coupling will decrease with density and temperature, extending in this way the applicability of the model to high densities and temperatures. These results are obtained without specifying an explicit regularization. As an illustration of the formalism, numerical results are obtained for the finite density and finite temperature quark condensate and applied to the problem of color superconductivity at high quark densities and finite temperature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We describe the derivation of an effective Hamiltonian which involves explicit hadron degrees of freedom and consistently combines chiral symmetry and color confinement. We use a method known as Fock-Tani (FT) representation and a quark model formulated in the context of Coulomb gauge QCD. Using this Hamiltonian, we evaluate the dissociation cross section of J/psi in collision with rho.
Resumo:
1/N(c) expansion in QCD (with N(c) the number of colors) suggests using a potential from meson sector (e.g., Richardson) for baryons. For light quarks a sigma-field has to be introduced to ensure chiral symmetry breaking (chi-SB). It is found that nuclear matter properties can be used to pin down the chi-SB modeling. All masses, M(N), m-sigma, m-omega, are found to scale with density. The equations are solved self-consistently.