39 resultados para cephalosporins


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The catalytic function of extended-spectrum β-lactamases can result in high degrees of bacterial resistance to β-lactamic antimicrobials and in the emergence of ESBL among the members of Enterobacteriaceae family, especially Klebsiella pneumoniae and Escherichia coli. This occurs due to the dissemination and emergence of new variants of these enzymes caused by the high utilization of antibiotics like broad-spectrum cephalosporins. The ESBL are β-lactamases capable of conferring bacterial resistance to the penicillins, 1st, 2nd and 3rd generation cephalosporins, and aztreonam (but not cephamycins and carbapenems) through the hydrolysis of these antibiotics. In view of this phenomenon, the exact screening and detection of the producers of ESBL are essential for the appropriate selection of the antimicrobial therapy. The purposes of this study were to evaluate the best antimicrobial for the selection of ESBL producers and to determine the best method for the detection of such microorganisms. We evaluated 200 sequential bacterial samples including the species Klebsiella pneumoniae (56.5%), Escherichia coli (34%), Proteus mirabilis (8.5%) and Klebsiella oxytoca (1%), previously characterized as ESBL producers between February and September 2008 in the Laboratory of Microbiology, Botucatu Medical School - UNESP, Botucatu, São Paulo State, Brazil. To select the ESBL-producer bacteria, we used the disks recommended by CLSI 2008, aztreonam (ATM), cefpodoxime (CPD), ceftriaxone (CRO), cefotaxime (CTX) and ceftazidime (CAZ), besides cefepime (FEP). ESBL production was confirmed by three methods: double disk screening, ESBL Etest®, and Vitek® automated system. The disks employed in the double disk screening were: penicillin associated with β-lactamase inhibitor, amoxicillin-clavulanic acid, and two β-lactamic antibiotics, ceftazidime and cefotaxime...(Complete abstract click electronic access below)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis and total NMR characterization of 5-thia-1-azabicyclo-[4.2.0]oct-2-ene-2-carboxylic acid-3-[[[(4″- nitrophenoxy)carbonyl]oxy]-methyl]-8-oxo-7-[(2-thienyloxoacetyl)amino] -diphenylmethyl ester-5-dioxide (5), a new cephalosporin derivative. This compound can be used as the carrier of a wide range of drugs containing an amino group. The preparation of the intermediate product, 5-thia-1-azabicyclo[4.2.0] oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino) pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl)amino]-diphenylmethyl ester-5-dioxide (6), as well as the synthesis of the antimalarial primaquine prodrug 5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid-3-[methyl 4-(6-methoxyquinolin-8-ylamino)pentylcarbamate]-8-oxo-7-[(2-thienyloxoacetyl) amino]- 5-dioxide (7) are also described, together with their total 1H- and 13C-NMR assignments. © 2008 by MDPI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microemulsions of hexadecyltrimethylammonium bromide (HTAB)/n-butanol/hexadecane/water catalyze the intramolecular degradation of cephaclor. The rate increase is a sensitive function of the microemulsion volume fraction and salt concentration. The effects of microemulsions, analyzed quantitatively using a pseudophase ion-exchange model, assumed that the extent of ion dissociation from the microemulsions varies with volume fraction. Comparison of micellar and microemulsion effects on the same reaction shows that microemulsions are less effective catalysts. Acceleration decreased significantly by increasing the relative proportion of n-butanol ratio in microemulsions and by addition of n-butanol in HTAB micelles. Comparison of the activation parameters of the reaction in aqueous solution, microemulsions, and micelles suggests that catalysis by both aggregates is driven mainly by entropic contributions.