48 resultados para cell strain COS1


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work investigated the effects of increasing temperature from 30 degrees C to 47 degrees C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30 degrees C, and then the temperature of the system was raised so it ranged from 35 degrees C in the last reactor to 43 degrees C in the first reactor or feeding reactor with a 2 degrees C difference between reactors. After 15 days at steady state, the temperature was raised from 37 degrees C to 45 degrees C for 25 days at steady state, then from 39 degrees C to 47 degrees C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/alpha, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40 degrees C, weak growth at 41 degrees C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40 degrees C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39-47 degrees C, but no isolates showing growth above 41 degrees C were obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Flotation is a process of cell separation based on the affinity of cells to air bubbles. In the present work, flotability and hydrophobicity were determined using cells from different yeasts (Hansenulla polymorpha, Saccharomyces cerevisiae, Candida albicans), which were propagated in different media and at different temperatures. Alterations to the supernatant of the cells were also carried out before the flotation assays. The results described here indicate that supernatants of the yeast cells can play a more important role on flotation than cell-wall hydrophobicity. For example, wall-hydrophobicity of strain FLT-01 of S. cerevisiae was high but flotation did not occur when their washed cells were resuspended in water. Additions of neopeptone to cultures of S. cerevisiae and H. polymorpha repressed flotation and increased the volume of foam. An additional task of the present work was to show that the relationship between cell-wall hydrophobicity and flotation performance was dependent on the method used for the measurement of hydrophobicity. Based on the assay procedure, two types of hydrophobicity were distinguished: (a) the apparent hydrophobicity for cells suspended in the medium and expressed by the degree of cell affinity to the organic solvent in the two-phase system supernatant/hexane; (b) the standard hydrophobicity, which was determined for cells suspended in a standard solution (acetate buffer, in the present work) within the acetate buffer/hexane system. Flotation of cells of S. cerevisiae and C albicans were best related to the degree of apparent hydrophobicity (varying with the supernatant composition at the cell/medium interface) rather than to the degree of standard hydrophobicity (varying with the alterations in the wall components, since the liquid phase was constant in the assay). However, depending on the yeast unpredictable results can be obtained. For example, cells of H. polymorpha exhibited good flotation associated to a high degree of standard hydrophobicity while having a lower degree of apparent hydrophobicity. Concerning growth temperature, flotation of cells of C albicans was strongly repressed when the temperature was raised from 30 to 38 degreesC while a similar effect was not observed in cultures of S. cerevisiae and H. polymorpha. It is difficult to understand and predict flotation of yeast cells but simple modifications made to the supernatant of cultures can activate or repress flotation. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Maintenance of high cell viability was the main characteristic of our new strains of thermotolerant Saccharomyces. Total sugar conversion to ethanol was observed for sugarcane juice fermentation at 38-40-degrees-C in less than 10 h and without continuous aeration of the culture. Invertase activity differed among the selected strains and increased during fermentation but was not dependent on cell viability. Invertase activity of the cells and optimum temperature for growth, as well as velocity of ethanol formation, were dependent on medium composition and the type of strain used. At high sugarcane syrup concentrations, the best temperature for ethanol formation by strain 781 was 35-degrees-C. Distinct differences among the velocities of ethanol production using selected strains were also observed in sugarcane syrup at 35-38-degrees-C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To study the role played by acetate metabolism during high-cell-density growth of Escherichia coli cells, we constructed isogenic null mutants of strain W3100 deficient for several genes involved either in acetate metabolism or the transition to stationary phase. We grew these strains under identical fed-batch conditions to the highest cell densities achievable in 8 h using a predictive-plus-feedback-controlled computer algorithm that maintained glucose at a set-point of 0.5 g/l, as previously described. Wild-type strains, as well as mutants lacking the sigma(s) subunit of RNA polymerase (rpoS), grew reproducibly to high cell densities (44-50 g/l dry cell weights, DCWs). In contrast, a strain lacking acetate kinase (ackA) failed to reach densities greater than 8 g/l. Strains lacking other acetate metabolism genes (pta, acs, poxB, iciR, and fadR) achieved only medium cell densities (15-21 g/l DCWs). Complementation of either the acs or the ackA mutant restored wild-type high-cell-density growth, on a dry weight basis, poxB and fadR strains produced approximately threefold more acetate than did the wild-type strain. In contrast, the pta, acs, or rpoS strains produced significantly less acetate per cell dry weight than did the wild-type strain. Our results show that acetate metabolism plays a critical role during growth of E. coli cultures to high cell densities. They also demonstrate that cells do not require the sigma(s) regulon to grow to high cell densities, at least not under the conditions tested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The polysaccharide fraction of Paracoccidioides brasiliensis mycelial cell wall (F1 fraction), the active component of which is composed of beta-glucan, was investigated in regard to the activation of human monocytes for fungal killing. The cells were primed with interferon-gamma (IFN-gamma) or F1 (100 and 200 mug ml(-1)) or F1 (100 and 200 mug ml(-1)) plus IFN-gamma for 24 h and then evaluated for H2O2 release. In other experiments, the cells were pretreated with the same stimuli, challenged with a virulent strain of P. brasiliensis and evaluated for fungicidal activity and levels of tumor necrosis factor (TNF-alpha) in the supernatants. F1 increased the levels of H2O2 in a similar manner to IFN-gamma. However, a synergistic effect between these two activators was not detected. on the contrary, a significant fungicidal activity was only obtained after priming with IFN-gamma plus F1. This higher activity was associated with high levels of TNF-alpha in the supernatants of the cocultures. Overall, P. brasiliensis F1 fraction induced human monocytes to release relatively high levels of TNF-alpha, which, in combination with IFN-gamma, is responsible for the activation of human monocytes for effective killing of P. brasiliensis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anaplasma is a tick-borne ehrlichial pathogen of cattle that causes the disease, anaplasmosis. In the present study, a total of 11 Anaplasma marginale seronegative calves were assigned into two groups: one immunized (G1, n = 6) and one nonimmunized-control (G2, n = 5). Six calves were immunized by using a DNA vaccine containing the gene of a major surface protein, MSP1b, encoded by the plasmid identified as pcDNA3.1/MSPIb. Calves received three intramuscular inoculations of 100 mug of pcDNA3.1/MSP1b at a 20-day interval. The control group received buffer phosphate at the same schedule as the experimental group. The immune response elicited by immunization with pcDNA3.1/MSP1b was evaluated in mice and calves. Twenty days following initial immunization, specific serum antibody from four BALB/c mice bound MSP1b in inummoblots. Sixty days after the last immunization, all calves were challenged with cryopreserved A. marginale at a dose of 10(4) parasites/mL/animal by intravenous injection. Results of packed cell volume (PCV) and detection of infected erythrocytes in all experimental groups revealed that the decrease of PCV and detection of infected erythrocytes occurred at 28 to 42 days after challenge. Mean temperature values did not increase over 39.85degreesC. Antibodies developed by immunized bovines from G2 were detected 14 days after challenge. MSP1b was characterized during the immunization period and MSP2 was the most predominant polypeptide at the challenge period. DNA of A. marginale was detected in all groups just after challenge by nested PCR assay. It can be concluded that all immunized bovines were partially protected against homologous challenge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high incidence of tuberculosis around the world and the inability of BCG to protect certain populations clearly indicate that an improved vaccine against tuberculosis is needed. A single antigen, the mycobacterial heat shock protein hsp65, is sufficient to protect BALB/c mice against challenge infection when administered as DNA vaccine in a three-dose-based schedule. In order to simplify the vaccination schedule, we coencapsulated hsp65-DNA and trehalose dimicolate (TDM) into biodegradable poly(DL-lactide-co-glycolide) (PLGA) microspheres. BALB/c mice immunized with a single dose of DNA-hsp65/TDM-1oaded microspheres produced high levels of IgG2a subtype antibody and high amounts of IFN-gamma in the supernatant of spleen cell cultures. DNA-hsp65/TDM-loaded microspheres were also able to induce high IFN-gamma production in bulk lung cells from challenged mice and confer protection as effective as that attained after three doses of naked DNA administration. This new formulation also allowed a ten-fold reduction in the DNA dose when compared to naked DNA. Thus, this combination of DNA vaccine and adjuvants with immunomodulatory and carrier properties holds the potential for an improved vaccine against tuberculosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis and is known as a temperature-dependent dimorphic fungus. Even though several routes of transformation from a mycelial to yeast forms have been reported, the route via chlamydospore is the most important. At this time, conditions of temperature, nutrients, population of yeast cells and concentration of agar which influence chlamydospore formation are examined. P. brasiliensis strain Pb-18 was used in this experiment. Its yeast cells were mixed with agar media, and were cultured at various temperatures. The results were as follows: 1. At 25°C, more chlamydospores were formed in poor media than in rich ones. 2. At over 25°C, the number of chlamydospores increased in proportion to the increase in temperature. 3. Chlamydospores were most frequently formed when 106 yeast cell units were mixed with 25ml of medium. 4. One and 2.0‰ agars were the most adequate concentrations for chlamydospore formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 1000-kgf resistive strain-gauge load cell has been developed for quality testing of rocket propellant grain. A 7075-T6 aluminum alloy has been used for the elastic column, in which 8 uniaxial, 120-Ω strain gauges have been bonded and connected to form a full Wheatstone bridge to detect the strain. The chosen geometry makes the transducer insensitive to moments and, also, to the temperature. Experimental tests using a universal testing machine to imposed compression force to the load cell have demonstrated that its behavior is linear, with sensitivity of 2.90 μV/kgf ± 0.34%, and negligible hysteresis. The designed force transducer response to a dynamic test has been comparable to that of a commercial load cell. © 2005 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to evaluate white blood cell counts and serum protein profiles of commercial layers experimentally infected with Salmonella Gallinarum (SG) in order to better understand the pathophysiology of the disease caused by this bacterium. 180 five-day-old commercial layers were divided into 3 groups (G); G1 and G2 received 0.2 mL of inoculate containing 3.3x10 8 CFU or 3.3×10 5 CFU SG resistant to nalidix acid (Nal r)/mL, respectively, directly into their crops. G3 group did not receive the inoculum. Birds were sacrificed 24 hours before (T1) and 24 hours after the infection (T2), and three (T3), five (T4), seven (T5), and ten (T6) days after the administration of the inoculum. White blood cell counts were carried out in a Neubauer hemocytometer and in blood smears. Serum protein concentrations, including acute-phase proteins, were determined using sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Data were submitted to analysis of variance, and means were compared by Tukey's test (P <0.05). G1 and G2 groups presented higher leukocyte counts on T4 and T5, respectively, due to the increase of circulating lymphocytes and heterophils, with a significant difference relative to G3. In electrophoresis, an increase in the serum levels of ceruloplasmin, haptoglobin, and hemopexin and a decrease in transferrin, which are acute-phase proteins, was verified. IgA serum levels did not change; however, IgG concentration increased during the infection. In conclusion, the results provide information for the better understanding of the pathophysiology of fowl typhoid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microorganisms can produce lipases with different biochemical characteristics making necessary the screening of new lipase-producing strains for different industrial applications. In this study, 90 microbial strains were screened as potential lipase producers using a sensitive agar plate method with a suitable medium supplemented with Tween 20 and also a liquid culture supplemented with olive oil. The highest cell growth and lipase production for Candida viswanathii were observed in triolein and oleic acid when used as the only pure carbon source. Renewable low-cost triacylglycerols supported the best cell growth, and olive oil was found to be the best inducer for lipase production (19.50 g/L and 58.50 U). The selected conditions for enzyme production were found with yeast extract as nitrogen source and 1.5 % (w/v) olive oil (85.70 U) that resulted in a good cell growth yield (YX/S = 1.234 g/g) and lipase productivity (1.204 U/h) after 72 h of shake-flask cultivation. C. viswanathii lipase presented high hydrolytic activity on esters bonds of triacylglycerols of long-chain, and this strain can be considered an important candidate for future applications in chemical industries. © 2012 Springer-Verlag Berlin Heidelberg and the University of Milan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved protein among archaea and eukaryotes that has recently been implicated in the elongation step of translation. eIF5A undergoes an essential and conserved posttranslational modification at a specific lysine to generate the residue hypusine. The enzymes deoxyhypusine synthase (Dys1) and deoxyhypusine hydroxylase (Lia1) catalyze this two-step modification process. Although several Saccharomyces cerevisiae eIF5A mutants have importantly contributed to the study of eIF5A function, no conditional mutant of Dys1 has been described so far. In this study, we generated and characterized the dys1-1 mutant, which showed a strong depletion of mutated Dys1 protein, resulting in more than 2-fold decrease in hypusine levels relative to the wild type. The dys1-1 mutant demonstrated a defect in total protein synthesis, a defect in polysome profile indicative of a translation elongation defect and a reduced association of eIF5A with polysomes. The growth phenotype of dys1-1 mutant is severe, growing only in the presence of 1 M sorbitol, an osmotic stabilizer. Although this phenotype is characteristic of Pkc1 cell wall integrity mutants, the sorbitol requirement from dys1-1 is not associated with cell lysis. We observed that the dys1-1 genetically interacts with the sole yeast protein kinase C (Pkc1) and Asc1, a component of the 40S ribosomal subunit. The dys1-1 mutant was synthetically lethal in combination with asc1Δ and overexpression of TIF51A (eIF5A) or DYS1 is toxic for an asc1Δ strain. Moreover, eIF5A is more associated with translating ribosomes in the absence of Asc1 in the cell. Finally, analysis of the sensitivity to cell wall-perturbing compounds revealed a more similar behavior of the dys1-1 and asc1Δ mutants in comparison with the pkc1Δ mutant. These data suggest a correlated role for eIF5A and Asc1 in coordinating the translational control of a subset of mRNAs associated with cell integrity. © 2013 Galvão et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)