48 resultados para catalytic properties
Resumo:
Nanostructured composites based on titanium dioxide have been studied in order to improve optical and photo-catalytic properties, as well as their performance in gas sensors. In this work, titanium and tin dioxides were simultaneously synthesized by the polyol method resulting in TiO2 platelet coated with SnO2 nanoparticles as was observed by scanning electron microscopy. The thermal analysis showed that the combined synthesis promotes more easily the crystallization of the TiO2 rutile phase. The composite obtained after heat treatment at 500 °C showed to be formed of almost only rutile phases of both oxides. The optical properties analyzed by UV-Vis spectroscopy showed that the combined oxides have higher absorbance, which reinforces a model found in the literature based on the flow of photo-generated electrons to the conduction band of SnO2 delaying the recombination of charges.
Resumo:
Fuel cells powered directly with ethanol (Direct Ethanol Fuel Cell-DEFC) are very attractive for the possibility of using a renewable fuel in the generation of clean energy. However, it is still necessary to deepen the understanding of catalytic processes and their dependence on the catalytic properties. This work proposes to study the catalytic activity of ethanol oxidation in an alkaline medium of Pd nanoparticles supported in carbon oxide hybrids using various transition metal oxides (MoO3, TiO2, WO3 and ZrO2). The materials prepared were characterized by techniques such as X-ray diffraction, transmission electron microscopy (TEM) and X-ray dispersive spectroscopy (EDX) to verify the structure, the distribution of particles in the supports and the presence of Pd on particles oxide. Experiments of X-rays absorption spectroscopy were carried out using soft X-rays (SXS) to evaluate the changes in the electronic properties of the Pd particles caused by interactions with different oxides. Measurements of cyclic voltammetry and potential sweeps of adsorbed CO oxidation allowed evaluating general aspects of the catalysts' electrochemical behavior and determining the electrochemically active area thereof. The catalytic performances of ethanol oxidation in alkaline medium were evaluated by electrochemical techniques (potential scan and chronoamperometry), and showed an improvement in activity with the addition of oxides in material containing only carbon, which was most pronounced for the catalyst containing TiO2. This improvement was predominantly associated with the electronic effects caused by the interaction of Pd on the support, causing a vacancy in the 4d band of Pd which, in turn, produces variations in adsorption energies of the species...
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper provides information about the synthesis and mechanical properties of geopolymers based on fluid catalytic cracking catalyst residue (FCC). FCC was alkali activated with solutions containing different SiO2/Na2O ratios. The microstructure and mechanical properties were analysed by using several instrumental techniques. FCC geopolymers are mechanically stable, yielding compressive strength about 68 MPa when mortars are cured at 65 degrees C during 3 days. The results confirm the viability of producing geopolymers based on FCC. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The luciferases of the railroad worm Phrixotrix (Coleoptera: Phengodidae) are the only beetle luciferases that naturally produce true red bioluminescence. Previously, we cloned the green- (PxGR) and red-emitting (PxRE) luciferases of railroad worms Phrixotrix viviani and P. hirtus[OLE1]. These luciferases were expressed and purified, and their active-site properties were determined. The red-emitting PxRE luciferase displays flash-like kinetics, whereas PxGR luciferase displays slow-type kinetics. The substrate affinities and catalytic efficiency of PxRE luciferase are also higher than those of PxGR luciferase. Fluorescence studies with 8-anilino-1-naphthalene sulfonic acid and 6-p-toluidino-2-naphthalene sulfonic acid showed that the PxRE luciferase luciferin-binding site is more polar than that of PxGR luciferase, and it is sensitive to guanidine. Alutagenesis and modelling studies suggest that several invariant residues in the putative luciferin-binding site of PxRE luciferase cannot interact with excited oxyluciferin. These results suggest that one portion of the luciferin-binding site of the red-emitting luciferase is tighter than that of PxGR luciferase, whereas the other portion could be more open and polar.
Resumo:
A RNase of Aspergillus flavipes (IZ:1501) was purified from culture medium by chromatography on DEAE-cellulose and Sephadex G50 columns, after 96 h of cultivation. The molecular weight of the RNase was estimated to be 15 kD by gel filtration using Sephadex G100, and the optimum pH and temperature were 4.0 and 55 degrees C, respectively. Catalytic activity was inhibited by Hg2+, Ag+, Fe3+, Co2+ and Zn2+. The enzyme showed guanosine specificity producing only 3'-GMP from yeast RNA.
Resumo:
A ribonuclease was partially purified from the culture medium of Aspergillus flavipes (IZ:1501), after 96 h of cultivation by chromatography on DEAE-cellulose and Sephadex G100 columns. The molecular weight of the RNase was estimated to be 40 kD by gel filtration using Sephadex G100, and the optimum pH and temperature were 4.0 and 50-55 degrees C, respectively. Catalytic activity was inhibited by Zn+2, Fe+3, Hg+2 and Ag+ ions. The enzyme did not show an exact base specificity and produced four kinds of 3'-nucleotides from yeast RNA.
Resumo:
Piratoxins (PrTX) I and III are phospholipases A(2) (PLA(2)s) or PLA(2) homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA(2), while PrTX-I is a Lys49 PLA, homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities. (C) 2001 Academic Press.
Resumo:
This study answers several pending questions about alumina-catalyzed epoxidation with aqueous 70 wt% H2O2. To evaluate the effect of the water-to-aluminum tri-sec-butoxide molar ratio, this was systematically changed from 1 to 24. The xerogels were calcined at 450 degrees C and gave different gamma-Al2O3's with distinct textural and acidic properties. A combination of Al-27 MAS NMR and TPD-NH3 results of calcined aluminas allowed us to assign the type la. Al-OH sites as the catalytic sites for epoxidation. The type Ib Al-OH sites have no function in catalytic epoxidation, because ethyl acetate poisons these sites. The strong acid sites of types IIa, IIb, and III Al-OH groups are responsible for the undesired H2O2 decomposition and decreased oxidant selectivity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, KM values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging. © The Royal Society of Chemistry and Owner Societies 2009.
Resumo:
This paper reports our initial research to obtain SrWO4 microcrystals by the injection of ions into a hot aqueous solution and their photocatalytic (PC) properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The shape and average size of these SrWO 4 microcrystals were observed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In addition, we have investigated the PC activity of microcrystals for the degradation of rhodamine B (RhB) and rhodamine 6G (Rh6G) dyes. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy confirmed that SrWO4 microcrystals have a scheelite-type tetragonal structure without deleterious phases. FT-Raman spectra exhibited 12 Raman-active modes in a range from 50 to 1000 cm-1. FE-SEM and TEM images suggested that the SrWO4 microcrystals (rice-like - 95%; star-, flower-, and urchin-like - 5%) were formed by means of primary/secondary nucleation events and self-assembly processes. Based on these FE-SEM/TEM images, a crystal growth mechanism was proposed and discussed in details in this work. Finally, a good PC activity was first discovered of the SrWO4 microcrystals for the degradation of RhB after 80 min and Rh6G after 50 min dyes under ultraviolet-light, respectively. © 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder.
Resumo:
Reuse of industrial and agricultural wastes as supplementary cementitious materials (SCMs) in concrete and mortar productions contribute to sustainable development. In this context, fluid catalytic cracking catalyst residue (spent FCC), a byproduct from the petroleum industry and petrol refineries, have been studied as SCM in blended Portland cement in the last years. Nevertheless, another environmental friendly alternative has been conducted in order to produce alternative binders with low CO2 emissions. The use of aluminosilicate materials in the production of alkali-activated materials (AAMs) is an ongoing research topic which can present low CO2 emissions associated. Hence, this paper studies some variables that can influence the production of AAM based on spent FCC. Specifically, the influence of SiO 2/Na2O molar ratio and the H2O/spent FCC mass ratio on the mechanical strength and microstructure are assessed. Some instrumental techniques, such as SEM, XRD, pH and electrical conductivity measurements, and MIP are performed in order to assess the microstructure of formed alkali-activated binder. Alkali activated mortars with compressive strength up to 80 MPa can be formed after curing for 3 days at 65°C. The research demonstrates the potential of spent FCC to produce alkali-activated cements and the importance of SiO2/Na2O molar ratio and the H2O/spent FCC mass ratio in optimising properties and microstructure. © 2013 Elsevier Ltd. All rights reserved.