74 resultados para brown algae
Resumo:
Two-photon correlation of the light pulse emitted from a sonoluminescence bubble is discussed. It is shown that several important features of the mechanism of light emission, such as the time scale and the shape of the emission region, could be obtained from Hanbury-Brown-Twiss interferometry. We also argue that such a measurement may serve to reject one of the two currently suggested emission mechanisms, i.e., the thermal process versus the dynamical Casimir effect.
Resumo:
The phycoerythrin-deficient strain (green phenotype) of Hypnea musciformis (Rhodophyta) originated from a green branch, which had arisen as a spontaneous mutation in a wild plant (brown phenotype) collected from the Brazilian coast. The present study describes the growth responses to irradiance, photoperiod and temperature variations, pigment contents, and photosynthetic characteristics of the brown and green strains of H. musciformis. The results showed that growth rates increased as a function of irradiance (up to 40 mu mol photons m(-2) s(-1)) but, with further increase in irradiance (from 40 to 120 mu mol photons m(-2) s(-1)), became light-saturated and remained almost unchanged. The highest growth rates of the brown and green strains were observed in temperatures of 20-25 degrees C under long (14:10 h LD) and short (10:14 h LD) photoperiods. The brown strain had higher growth rates than the green strain in the short photoperiod, which could be related to the high concentrations of phycobiliproteins. Phycoerythrin was not detected in the green strain. The brown strain had higher concentrations of allophycocyanin and phycoerythrin in the short photoperiod while the green strain had higher concentrations of phycocyanin. The brown strain presented higher photosynthetic efficiency (alpha), and lower saturation parameter (I-k) and compensation irradiance (I-c) than the green strain. The brown strain exhibited the characteristics of shade-adapted plants, and its higher value of photosynthetic efficiency could be attributed to the higher phycoerythrin concentrations. Results of the present study indicate that both colour strains of H. musciformis could be selected for aquaculture, since growth rates were similar (although in different optimal light conditions), as the green strain seems to be adapted to higher light levels than the brown strain. Furthermore, these colour strains could be a useful experimental system to understand the regulation of biochemical processes of photosynthesis and metabolism of light-harvesting pigments in red algae.
Resumo:
The diet of the brown howler monkey Alouatta fusca in a 250 ha forest fragment in southeastern Brazil was studied for 42 consecutive months. The howlers were observed eating in 366 feeding records (one group or a monkey eating a single plant) of 52 plant species. Twenty three percent of the leaves and 52 % of the flowers in the howler's diet came from lianas. Eighteen fruit species were recorded as being dispersed by howlers and seeds of two liana species were eaten. In small forest fragments where most large specialized frugivores are absent howlers may be the main seed disperser of large fruits.
Resumo:
In greenhouse trials, copper hydroxide, pyraclostrobin, and famoxadone were applied to actively crowing young citrus seedlings to determine the duration of protection of young leaves provided by these fungicides against melanose, caused by Diaporthe citri, citrus scab, caused by Elsinoe fawcettii, and Alternaria brown spot, caused by Alternaria alternata. Fungicides were applied to different sets of potted plants of grapefruit for control of melanose, of rough lemon for control of scab, and of Dancy tangerine for control of Afternaria brown spot 1 to 6 days prior to inoculation. as well as on the day of inoculation. Leaf area of treated shoots was estimated on the day of fungicide application and the day of inoculation and disease severity evaluated subsequently. In most cases. copper hydroxide and famoxadone provided at least 50% control of all three diseases for only about 2 days after application. Generally, there was little or no disease control when the products were applied 4 or more days before inoculation. In contrast, pyraclostrobin usually provided a high level of control of all three diseases when applied up to 5 days prior to inoculation. The level of disease control decreased as the interval between a fungicide application and inoculation increased and the relationship between disease control and leaf expansion best fit a quadratic equation. Effective disease control was observed with copper hydroxide and famoxadone until leaf area had increased by 100 to 200%, whereas control with pyraclostrobin was observed up to 400 to 500% increase in leaf area. In postinoculation tests with scab and melanose, pyraclostrobin provided high levels of disease control (>75%) when applied up to 2 days after inoculation. whereas copper hydroxide and famoxadone had minimal postinoculation activity. Applications of pyraclostrobin to the spring flush growth of citrus trees are much more likely to provide control of melanose, scab, and Alternaria brown spot than those of famoxadone or copper hydroxide.
Resumo:
Alternaria brown spot, caused by Alternaria alternata, causes yield losses and fruit blemishes on many tangerines and their hybrids in most citrus areas of the world where susceptible cultivars are grown. Although the conditions affecting infection and disease severity are known, little information is available on inoculum production on infected tissue. We found that sporulation on leaves began about 10 days after symptoms developed, was abundant from 20 to 40 days, and declined thereafter. Conidial production was far greater on leaf than on fruit or twig lesions. Spore production per unit area of leaf lesion was greater on the more susceptible hybrids, Minneola and Orlando tangelos, than on the less susceptible Murcott tangor. At 74% relative humidity, conidial production on leaf lesions was low, but it was abundant at 85, 92.5, 96, and 100%. Application of Q(o)I or copper fungicides, but not ferbam, suppressed sporulation on leaf lesions for about 14 to 21 days after application. Additional applications did not appear to be more effective than a single spray in reducing inoculum production.
Resumo:
The main pool of dissolved organic carbon in tropical aquatic environments, notably in dark-coloured streams, is concentrated in humic substances (HS). Aquatic HS are large organic molecules formed by micro-biotic degradation of biopolymers and polymerization of smaller organic molecules. From an environmental point of view, the study of metal-humic interactions is often aimed at predicting the effect of aquatic HS on the bioavailability of heavy metal ions in the environment. In the present work the aquatic humic substances (HS) isolated from a dark-brown stream (located in an environmental protection area near Cubatao city in São Paulo-State, Brazil) by means of the collector XAD-8 were investigated. FTIR studies showed that the carboxylic carbons are probably the most important binding sites for Hg(II) ions within humic molecules. C-13-NMR and H-1-NMR studies of aquatic HS showed the presence of constituents with a high degree of aromaticity (40% of carbons) and small substitution. A special five-stage tangential-flow ultrafiltration device (UF) was used for size fractionation of the aquatic HS under study and for their metal species in the molecular size range 1-100 kDa (six fractions). The fractionation patterns showed that metal traces remaining in aquatic HS after their XAD-8 isolation have different distributions. Generally, the major percentage of traces of Mn, Cd and Ni (determined by ICP-AES) was preferably complexed by molecules with relatively high molecular size. Cu was bound by fractions with low molecular size and Co showed no preferential binding site in the various humic fractions. Moreover, the species formed between aquatic HS and Hg(II), prepared by spiking (determined by CVAAS), appeared to be concentrated in the relatively high molecular size fraction F-1 (> 100 kDa).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Seasonal variation in growth and yield of cultured brown mussels Perna perna was studied in Ubatuba, south-east Brazilian coastline. Young mussels were transplanted (seeded) into four groups of 16 polyethylene net tubes 2 m long, suspended from a wooden raft (18 m 2). The first group was set out in April (autumn), the next in July (winter), the next in October (spring) 1984 and the final group in January (summer) 1985. One net tube of each group was sampled monthly and biometric data were collected. Growth was initially faster for the spring group, but at the end of the culture period length and weight were not statistically different between groups. L(∞) and W(∞) were 73.9, 71.3, 72.7 and 73.8 mm and 26.3, 23.9, 25.7 and 25.7 g for the autumn, winter, spring and summer groups, respectively. Maximum yield was attained 9 months after seeding for groups of autumn, winter and spring (7.2, 5.2 and 6.3 kg x m -1, respectively) and after 10 months for the summer group (6.9 kg X m -1). The conclusion of this study is that, growth and yield were unaffected by the season of seeding at the study site and that it is not commercially worthwhile to farm mussels more than 9 months, due to yield decrease.
Resumo:
The effect of the continuous emission hypothesis on the two-pion Bose-Einstein correlation function is discussed and compared with the corresponding results based on the usual freeze-out. Sizable differences in the correlation function appear in these different descriptions of the decoupling process. This means that, when extracting properties of the hot matter formed in high-energy heavy-ion collisions from the data, completely different conclusions may be reached according to the description of the particle emission process adopted.
Resumo:
The responses of relative growth rate (% day-1) and pigment content (chlorophyll a, phycocyanin and phycoerythrin) to temperature, irradiance and photoperiod were analyzed in culture in seven freshwater red algae: Audouinella hermannii (Roth) Duby, Audouinella pygmaea (Kützing) Weber-van Bosse, Batrachospermum ambiguum Montagne, Batrachospermum delicatulum (Skuja) Necchi et Entwisle, 'Chantransia' stages of B. delicatulum and Batrachospermum macrosporum Montagne and Compsopogon coeruleus (C. Agardh) Montagne. Experimental conditions included temperatures of 10, 15, 20 and 25°C and low and high irradiances (65 and 300 μmol photons m-2 s-1, respectively). Long and short day lengths (16:8 and 8:16 LD cycles) were also applied at the two irradiances. Growth effects of temperature and irradiance were evident in most algae tested, and there were significant interactions among treatments. Most freshwater red algae had the best growth under low irradiance, confirming the preference of freshwater red algae for low light regimens. In general there was highest growth rate in long days and low irradiance. Growth optima in relation to temperature were species-specific and also varied between low and high irradiances for the same alga. The most significant differences in pigment content were related to temperature, whereas few significant differences could be attributed to variation in irradiance and photoperiod or interactions among the three parameters. The responses were species-specific and also differed for pigments in distinct temperatures, irradiances and photoperiods in the same alga. Phycocyanin was generally more concentrated than phycoerythrin and phycobiliproteins were more concentrated than chlorophyll a. The highest total pigment contents were found in two species typical of shaded habitats: A. hermannii and C. coeruleus. The expected inverse relationship of pigment with irradiance was observed only in C. coeruleus. In general, the most favorable conditions for growth were not coincident with those with highest pigment contents.
Resumo:
Fourteen culture isolates of freshwater acrochaetioid algae from distinct regions around the world were analysed, including the reddish species Audouinella hermannii, the dubious blue-greenish species A. pygmaea, and Chantransia stages from distinct taxonomic origins in the Batrachospermales sensu lato (Batrachospermaceae, Lemaneaceae and Thoreaceae). Four isolates (two 'Chantransia' stages and two species of Audouinella, A. hermannii and A. pygmaea) were tested under experimental conditions of temperature (10-25°C), irradiance (65 and 300 μmol photons m-2 s-1) and photoperiod (16:8 h and 8:16 h light/dark cycles). Plant colour is proposed as the only vegetative character that can be unequivocally applied to distinguish Audouinella from 'Chantransia', blue-greenish representing Chantransia stages and reddish applying to true Audouinella species (also forming reproductive structures other than monosporangia, e.g. tetrasporangia). Some isolates of A. pygmaea were proven to be unequivocally 'Chantransia stages owing either to production of juvenile gametophytes or to derivation from carpospores. No association of the morphology of A. pygmaea was found with any particular species, thus it should be regarded as a complex involving many species of the Batrachospermales sensu lato, as is also the case with A. macrospora. We therefore recommend that all blue-greenish acrochaetioid algae in freshwater habitats be considered as Chantransia stages of members of the Batrachospermales, and that the informal descriptors pygmaea and macrospora be used to distinguish the two discernable morphologies. Induction of gametophytes occurred under much wider conditions than previously reported, reinforcing the conclusion that requirements are probably species-specific. Although phenotypic plasticity was in evidence, with temperature, irradiance and photoperiod affecting morphology, no alga showed variation outside the limits based on traditional taxonomic studies. No overall trend was observed for vegetative or reproductive characters in response to temperature, irradiance and photoperiod for all the algae tested, only for specific algae or characters. Effects of temperature and irradiance on morphological characters were more evident, as well as strong interactions between these variables, whereas few differences were generally found in response to photoperiod and irradiance.
Resumo:
This work objectified the study of sucrose and sorbitol effect in the in vitro conservation for Passiflora giberti N. E. Brown, access. Therefore, an experiment was conducted in a completely randomized design to compare control treatment (standard MS) to MS medium supplemented with three sucrose concentrations (0, 15 and 30 g L -1) combined with three sorbitol concentrations (10, 20 and 40 g L -1), in a total of 10 treatments with 20 replicas. The experiment evaluation was carried out at 30, 60, 90 and 120 days of incubation, whereas the height of shoots (cm), number of roots, number and color of leaves were observed. The results showed the possibility to maintain passion-fruit microplants for a four months period under slow growth in MS medium supplemented with 10 or 20 g L -1 of sorbitol, without sucrose, and kept under 16 hours photoperiod (22 μ E m -2 s -1) and temperature of 27 ± 1°C. Sucrose sustained the longest development of the microplants. Root formation was affected by the sorbitol in the concentration of 40 g L -1 and by the absence of sucrose in the culture medium.