139 resultados para barium chloride
Resumo:
Combined dynamic and static light scattering (DLS, SLS) and cryogenic transmission electron microscopy (cryo-TEM) were used to investigate extruded cationic vesicles of dioctadecyldimethylammonium chloride and bromide (DODAX, X being Cl- or Br-). In salt-free dispersions the mean hydrodynamic diameter, D-h, and the weight average molecular weight, M-w, are larger for DODAB than for DODAC vesicles, and both D-h and M-w increase with the diameter (phi) of the extrusion filter. NaCl (NaBr) decreases (increases) the DODAB (DODAC) vesicle size, reflecting the general trend of DODAB to assemble as larger vesicles than DODAC. The polydispersity index is lower than 0.25, indicating the dispersions are rather polydisperse. Cryo-TEM micrographs show that the smaller vesicles are spherical while the larger ones are oblong or faceted, and the vesicle samples are fairly polydisperse in size and morphology. They also indicate that the vesicle size increases with phi and DODAB assembles as larger vesicles than DODAC. Lens-shaped vesicles were observed in the extruded preparations. Both light scattering and cryo-TEM indicate that the vesicle size is larger or smaller than phi when phi is smaller or larger than the optimal phi* approximate to 200 nm. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Barium zirconium titanate (BZT) ceramics were prepared by mixed oxide method. X-ray diffraction showed the presence of a single phase while Raman scattering confirmed structural transitions as a function of different Zr/Ti ratio. The addition of Zr strongly influenced the crystal structure and electrical properties of the ceramics. A typical hysteresis loops were observed for all investigated compositions. BZT ceramics with 15 mol% Zr have shown a ferroelectric to paraelectric transition at around 77 degrees C. (C) 2007 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ultasonic spray pyrolysis (SP) has been investigated for the production of the barium strontium titanate (BST) powders from the polymeric precursors. The processing parameters, such as flux of aerosol and temperature profile inside the furnace, were optimized to obtain single phase BST. The powders were characterized by the methods of X-ray diffraction analysis, SEM, EDS and TEM. The obtained powders were submicronic, consisting of spherical, polycrystalline particles, with internal nanocrystalline structure. Crystallite size of 10 nut, calculated using Rietveld refinement, is in a good agreement with results of HRTEM. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical corrosion and passivation of Al-5Zn-1.7Mg-0.23Cu-0.053Nb alloys, submitted to different heat treatments (cold-rolled, annealed, quenched and aged, and quenched in two steps and aged), in sulphate-containing chloride solutions, has been studied by means of cyclic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and X-ray photoelectron spectroscopy (XPS). The cyclic polarization curves showed that sulphate addition to the chloride solution produced a poor reproducible shift of the breakdown potential to more positive potentials. The repassivation potentials, much more reproducible, and practically separating the passive from the pitting potential region, were slightly displaced in the negative direction with that addition. When the alloys were potentiodynamically polarized in the passive potential region, sulphate was incorporated in the oxide film, thus precluding chloride ingress. In addition, Zn depletion was favoured, whereas Mg losses were avoided. Different equivalent circuits corresponding to different alloys and potentials in the passive and pitting regions were employed to account for the electrochemical processes taking place in each condition. This work shows that sulphate makes these alloys more sensitive to corrosion, increasing the fracture properties of the surface layer and favouring the pitting attack over greater areas than chloride alone. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Vanadium modified barium zirconium titanate ceramics Ba(Zr(0.10)Ti(0.90))O(3):2V (BZT:2V) were prepared from the mixed oxide method. According to X-ray diffraction analysis, addition of vanadium leads to ceramics free of secondary phases. Electrical characteristics reveal a dielectric permittivity at around 15,000 with low dielectric loss with a remnant polarization (P(r))of 8 mu C/cm(2) at 2 kV/cm. From the obtained results, we assume that vanadium substitution in the BZT lattice affects dielectric characteristics due to the electron-relaxation-mode in which carriers (polarons, protons, and so on) are coupled with existing dielectric modes. (C) 2009 Published by Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The emission of wide band photoluminescence showed a synergic effect on barium zirconate and barium titanate thin films in alternate multilayer system at room temperature by 488 nm exiting wavelength. The thin films obtained by spin-coating were annealed at 350, 450, and 550 degrees C for 2 h. The X-ray patterns revealed the complete separation among the BaTiO3 and BaZrO3 phases in the adjacent films. Visible and intense photoluminescence was governed by BaZrO3 thin films in the multilayer system. Quantum mechanics calculations were used in order to simulate ordered and disordered thin films structures. The disordered models, which were built by using the displacement of formers and modifier networks, showed a different symmetry in each system, which is in accordance with experimental photoluminescence emission, thus allowing to establish a correlation among the structural and optical properties of these multilayered systems.
Resumo:
The production of chlorine was investigated in the photoelectrocatalytic oxidation of a chloride-containing solution using a TiO(2) thin-film electrode biased at current density from 5 to 50 mA cm(-2) and illuminated by UV light. Such parameters as chloride concentrations from 0.001 to 0.10 mol L(-1), pH 2-12, and interfering salts were varied in this study in order to determine their effect on this oxidation process. At an optimum condition this photoelectrocatalytic method can produce active chlorine at levels compatible to water disinfections processes using a chloride concentration higher than 0.010 mol L(-1) at a pH of 4 and a current density of 30 mA cm(-2). The method was successfully applied to treat surface water collected from a Brazilian river. After 150 min of photoelectrocatalytic oxidation, we obtained a 90% reduction in total organic carbon removal, a 100% removal of turbidity, a 93% decrease in colour and a chemical oxygen demand (COD) removal of around 96% (N=3). The proposed technology based on photoelectrocatalytic oxidation was also tested in treating 250 mL of a solution containing 0.05 mol L(-1) NaCl and 50 mu g L(-1) of Microcystin aeruginosa. The bacteria is completely removed after 5 min of photoelectrocatalysis following an initial rate constant removal of -0.260 min(-1), suggesting that the present method could be considered as a promising alternative to chlorine-based disinfections. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)