88 resultados para backward warping
Resumo:
Determining the variability of carbon dioxide emission from soils is an important task as soils are among the largest sources of carbon in biosphere. In this work the temporal variability of bare soil CO2 emissions was measured over a 3-week period. Temporal changes in soil CO2 emission were modelled in terms of the changes that occurred in solar radiation (SR), air temperature (T-air), air humidity (AR), evaporation (EVAP) and atmospheric pressure (ATM) registered during the time period that the experiment was conducted. The multiple regression analysis (backward elimination procedure) includes almost all the meteorological variables and their interactions into the final model (R-2 = 0.98), but solar radiation showed to be the one of the most relevant variables. The present study indicates that meteorological data could be taken into account as the main forces driving the temporal variability of carbon dioxide emission from bare soils, where microbial activity is the sole source of carbon dioxide emitted. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The problems of wave propagation and power flow in the distribution network composed of an overhead wire parallel to the surface of the ground have not been satisfactorily solved. While a complete solution of the actual problem is impossible, as it is explained in the famous Carson's paper (1926), the solution of the problem, where the actual earth is replaced by a plane homogenous semi-infinite solid, is of considerable interest. In this paper, a power flow algorithm in distribution networks with earth return, based on backward-forward technique, is discussed. In this novel use of the technique, the ground is explicitly represented. In addition, an iterative method for determining impedance for modelling ground effect in the extended power flow algorithm is suggested. Results obtained from single-wire and three-wire studies using IEEE test networks are presented and discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
A reversible intermittent pow-injection procedure is proposed for the automated determination of mercury in sediments and vinasses by cold vapor atomic absorption spectrometry, CVAAS. Solutions of sample and stannous chloride are carried by two air streams and sequentially injected into the generator/separator chamber in a segmented asynchronous merging zone configuration. The intermittent flow in the forward direction carries the mercury vapor through the flow cell, and in the backward direction, if aspirates the the remaining solution from the vessel to waste. We investigated composition and concentration of reagents, pow rates, commutation times, reactor configuration, and conditions for mercury release. The accuracy was checked by mercury determination in a certified sediment and spiked vinasses and river waters. The system handles about 100 samples per hour (0.50-5.00 mu g L-1), consuming ca. 2.5 mL of sample and 50 mg of SnCl2 per determination; Good recoveries (92-103%) were obtained with spiked samples. Results are precise (RSD <3% for 2.5 mu g Hg L-1, n = 12) and in agreement with values for certified reference material at 95% confidence level. (C) 1999 John Wiley & Sons, Inc.
Resumo:
The aim of the present investigation was to provide information about the long-term effects and optimal timing for class-II treatment with the Bionator appliance. Lateral cephalograms of 23 class-II patients treated with the Bionator were analyzed at three time periods: T1, start of treatment; T2, end of Bionator therapy; and T3, long-term observation (after completion of growth). T3 includes a phase with fixed appliances. The treated sample was divided into two groups according to their skeletal maturity as evaluated by the cervical vertebral maturation (CVM) method. The early-treated group (13 subjects) initiated treatment before the peak in mandibular growth, which occurred after completion of Bionator therapy. The late-treated group (10 subjects) received Bionator treatment during the peak. The T1-T2, T2-T3, and T1-T3 changes in the treated groups were compared with changes in control groups of untreated class-II subjects by nonparametric statistics (P < .05). The findings of the present study on Bionator therapy followed by fixed appliances indicate that this treatment protocol is more effective and stable when it is performed during the pubertal growth spurt. Optimal timing to start treatment with the Bionator is when a concavity appears at the lower borders of the second and the third cervical vertebrae (CVMS 11). In the long term, the amount of significant supplementary elongation of the mandible in subjects treated during the pubertal peak is 5.1 mm more than in the controls, and it is associated with a backward direction of condylar growth. Significant increments in mandibular ramus height also were recorded.
Resumo:
The neutral wire in most power flow software is usually merged into phase wires using Kron's reduction. Since the neutral wire and the ground are not explicitly represented, neutral wire and ground currents and voltages remain unknown. In some applications, like power quality and safety analyses, loss analysis, etc., knowing the neutral wire and ground currents and voltages could be of special interest. In this paper, a general power flow algorithm for three-phase four-wire radial distribution networks, considering neutral grounding, based on backward-forward technique, is proposed. In this novel use of the technique, both the neutral wire and ground are explicitly represented. A problem of three-phase distribution system with earth return, as a special case of a four-wire network, is also elucidated. Results obtained from several case studies using medium- and low-voltage test feeders with unbalanced load, are presented and discussed.
Resumo:
The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360 degrees around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The trapezius (pars superior) and levator scapulae mm were studied in the arm movements of circumduction and pendular oscillation in 30 adult volunteers of both sexes. A two-channel TECA TE 4 electromyograph and single coaxial needle electrodes were used. It was found out that as arm conduction, both muscles show an activity that gradually increases and decreases the intensity at the elevation and lowering phases respectively. It was also noticed that between two consecutive circumductions a 'silent period' in the activity of the above mentioned muscles occurs. In pendular oscillation these muscles show electrical activity both in the forward and backward moving, and both muscles show a 'silent period' when the arm passes by the trunk. It was not observed in these movements any significant difference in activity of these muscles regarding sex.
Resumo:
We outline a method for registration of images of cross sections using the concepts of The Generalized Hough Transform (GHT). The approach may be useful in situations where automation should be a concern. To overcome known problems of noise of traditional GHT we have implemented a slight modified version of the basic algorithm. The modification consists of eliminating points of no interest in the process before the application of the accumulation step of the algorithm. This procedure minimizes the amount of accumulation points while reducing the probability of appearing of spurious peaks. Also, we apply image warping techniques to interpolate images among cross sections. This is needed where the distance of samples between sections is too large. Then it is suggested that the step of registration with GHT can help the interpolation automation by simplifying the correspondence between points of images. Some results are shown.
Resumo:
The methods of effective field theory are used to explore the theoretical and phenomenological aspects of the torsion field. The spinor action coupled to the electromagnetic field and torsion possesses an additional softly broken gauge symmetry. This symmetry enables one to derive the unique form of the torsion action compatible with unitarity and renormalizability. It turns out that the antisymmetric torsion field is equivalent to a massive axial vector field. The introduction of scalars leads to serious problems which are revealed after the calculation of the leading two-loop divergences. Thus the phenomenological aspects of torsion may be studied only for the fermion-torsion systems. In this part of the paper we obtain upper bounds for the torsion parameters using present experimental data on forward-backward Z-pole asymmetries, data on the experimental limits on four-fermion contact interaction (LEP, HERA, SLAC, SLD, CCFR) and also TEVATRON limits on the cross section of a new gauge boson, which could be produced as a resonance at high energy pp collisions. The present experimental data enable one to put limits on the torsion parameters for the various ranges of the torsion mass. We emphasize that for a torsion mass of the order of the Planck mass no independent theory for torsion is possible, and one must directly use string theory. © 1999 Elsevier Science B.V.
Resumo:
Background: Microalbuminuria may reflect diffuse endothelial damage. Considering that diabetes and hypertension cause vasculopathy, we investigated associations of albumin-to-creatinine ratio (ACR) with plasma glucose and blood pressure levels in high-risk subjects for metabolic syndrome. Methods: A sample of 519 (246 men) Japanese-Brazilians (aged 60 ± 11 years), who participated in a population-based study, had their ACR determined in a morning urine specimen. Backward models of multiple linear regression were created for each gender including log-transformed values of ACR as dependent variable; an interaction term between diabetes and hypertension was included. Results: Macroalbuminuria was found in 18 subjects. ACR mean values for subjects with normal glucose tolerance, impaired fasting glycemia, impaired glucose tolerance and diabetes were 9.9 ± 6.0, 19.0 ± 35.4, 20.7 ± 35.4, and 33.9 ± 55.0 mg/g, respectively. Diabetic subjects showed higher ACR than the others (p < 0.05). An increase in the proportion of albuminuric subjects was observed as glucose metabolism deteriorated (4.9, 17.0, 23.0 and 36.0%). Stratifying into 4 groups according to postchallenge glycemia (< 7.8 mmol/l, n = 9 1; ≥ 7.8 mmol/l, n = 4 10) and hypertension, hypertensive and glucose-intolerant subgroups showed higher ACR values. ACR was associated with gender, waist circumference, blood pressure, plasma glucose and triglyceride (p < 0.05); albuminuric subjects had significantly higher levels of such variables than the normoalbuminuric ones. In the final models of linear regression, systolic blood pressure and 2-hour glycemia were shown to be independent predictors of ACR for both genders (p < 0.05). In men, also waist was independently associated with ACR. No interaction was detected between diabetes and hypertension. Conclusions: These findings suggest that both glucose intolerance and hypertension could have independent but not synergistic effects on endothelial function - reflected by albumin loss in urine. Such hypothesis needs to be confirmed in prospective studies. © 2004 Dustri-Verlag Dr. K. Feistle.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Three-phase three-wire power flow algorithms, as any tool for power systems analysis, require reliable impedances and models in order to obtain accurate results. Kron's reduction procedure, which embeds neutral wire influence into phase wires, has shown good results when three-phase three-wire power flow algorithms based on current summation method were used. However, Kron's reduction can harm reliabilities of some algorithms whose iterative processes need loss calculation (power summation method). In this work, three three-phase three-wire power flow algorithms based on power summation method, will be compared with a three-phase four-wire approach based on backward-forward technique and current summation. Two four-wire unbalanced medium-voltage distribution networks will be analyzed and results will be presented and discussed. © 2004 IEEE.
Resumo:
Distribution systems with distributed generation require new analysis methods since networks are not longer passive. Two of the main problems in this new scenario are the network reconfiguration and the loss allocation. This work presents a distribution systems graphic simulator, developed with reconfiguration functions and a special focus on loss allocation, both considering the presence of distributed generation. This simulator uses a fast and robust power flow algorithm based on the current summation backward-forward technique. Reconfiguration problem is solved through a heuristic methodology and the losses allocation function, based on the Zbus method, is presented as an attached result for each obtained configuration. Results are presented and discussed, remarking the easiness of analysis through the graphic simulator as an excellent tool for planning and operation engineers, and very useful for training. © 2004 IEEE.
Resumo:
Low flexibility and reliability in the operation of radial distribution networks make those systems be constructed with extra equipment as sectionalising switches in order to reconfigure the network, so the operation quality of the network can be improved. Thus, sectionalising switches are used for fault isolation and for configuration management (reconfiguration). Moreover, distribution systems are being impacted by the increasing insertion of distributed generators. Hence, distributed generation became one of the relevant parameters in the evaluation of systems reconfiguration. Distributed generation may affect distribution networks operation in various ways, causing noticeable impacts depending on its location. Thus, the loss allocation problem becomes more important considering the possibility of open access to the distribution networks. In this work, a graphic simulator for distribution networks with reconfiguration and loss allocation functions, is presented. Reconfiguration problem is solved through a heuristic methodology, using a robust power flow algorithm based on the current summation backward-forward technique, considering distributed generation. Four different loss allocation methods (Zbus, Direct Loss Coefficient, Substitution and Marginal Loss Coefficient) are implemented and compared. Results for a 32-bus medium voltage distribution network, are presented and discussed.