54 resultados para articial boundary inhomogeneity
Resumo:
We calculate ground-state energies and density distributions of Hubbard superlattices characterized by periodic modulations of the on-site interaction and the on-site potential. Both density-matrix renormalization group and density-functional methods are employed and compared. We find that small variations in the on-site potential v(i) can simulate, cancel, or even overcompensate effects due to much larger variations in the on-site interaction U-i. Our findings highlight the importance of nanoscale spatial inhomogeneity in strongly correlated systems, and call for a reexamination of model calculations assuming spatial homogeneity.
Resumo:
Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that C-T-1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.
Resumo:
We establish exact boundary controllability for the wave equation in a polyhedral domain where a part of the boundary moves slowly with constant speed in a small interval of time. The control on the moving part of the boundary is given by the conormal derivative associated with the wave operator while in the fixed part the control is of Neuman type. For initial state H-1 x L-2 we obtain controls in L-2. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The electric and dielectric properties of the grain boundary of Na0.85Li0.15NbO3 lead-free ferroelectric-semiconductor perovskite were investigated. The impedance spectroscopy was carried out as a function of a thermal cycle. The sodium lithium niobate was synthesized by a chemical route based on the evaporation method. Dense ceramic, relative density of 97%, was prepared at 1423 K for 2 h in air atmosphere. ac measurements were carried out in the frequency range of 5 Hz-13 MHz and from 673 to 1023 K. Theoretical adjust of the impedance data was performed to deriving the electric parameters of the grain boundary. The electric conductivity follows the Arrhenius law, with activation energy values equal to 1.55 and 1.54 eV for heating and cooling cycle, respectively. The nonferroelectric state of the grain boundary and its correlation with symmetry are discussed in the temperature domain. (C) 2003 American Institute of Physics.
Resumo:
In this work, a numerical model to perform non-linear analysis of building floor structures is proposed. The presented model is derived from the Kirchhoff-s plate bending formulation of the boundary element method (BENI) for zoned domains, in which the plate stiffness is modified by the presence of membrane effects. In this model, no approximation of the generalized forces along the interface is required and the compatibility and equilibrium conditions along interfaces are imposed at the integral equation level. In order to reduce the number of degrees of freedom, the Navier Bernoulli hypothesis is assumed to simplify the strain field for the thin sub-regions (rectangular beams). The non-linear formulation is obtained from the linear formulation by incorporating initial internal force fields, which are approximated by using the well-known cell sub-division. Then, the non-linear solution of algebraic equations is obtained by using the concept of the consistent tangent operator. The Von Mises criterion is adopted to govern the elasto-plastic material behaviour checked at points along the plate thickness and along the rectangular beam element axes. The numerical representations are accurately obtained by either computing analytically the element integrals or performing the numerical integration accurately using an appropriate sub-elementation scheme. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is to present a formulation of the boundary element method to analyse elastic and isotropic plates with curved boundaries. In this study the plate boundary is approximated, along each element, by a second degree polynomial relation or by a circular arch, in order to better represent the real boundary. The numerical integration is performed by the self-adaptive coordinate transformation proposed by Telles. The effective shear forces are approximated by concentrated reactions applied at the boundary element nodes, according to the alternative formulation introduced by Paiva. Some examples are presented to demonstrate the better accuracy obtained with the proposed elements.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Structurally the boundary tissue of the vampire bat seminiferous tubuli showed 2 to 5 layers of connective tissue in which elongated contractile cells and lamellar and/or fibrillar collagen were noticed. This boundary tissue forms the seminiferous tubular lamina propria. Its structure was more complex around the seminiferous tubuli near the Capsula testicularis than between the adjacent and contiguous tubuli into the testicular lobuli. The whole ultrastructural organization of the seminiferous lamina propria was described here.
Resumo:
This paper presents a viscous three-dimensional simulations coupling Euler and boundary layer codes for calculating flows over arbitrary surfaces. The governing equations are written in a general non orthogonal coordinate system. The Levy-Lees transformation generalized to three-dimensional flows is utilized. The inviscid properties are obtained from the Euler equations using the Beam and Warming implicit approximate factorization scheme. The resulting equations are discretized and approximated by a two-point fmitedifference numerical scheme. The code developed is validated and applied to the simulation of the flowfield over aerospace vehicle configurations. The results present good correlation with the available data.
Resumo:
We consider a scalar field theory on AdS, and show that the usual AdS/CFT prescription is unable to map to the boundary a part of the information arising from the quantization in the bulk. We propose a solution to this problem by defining the energy of the theory in the bulk through the Noether current corresponding to time displacements, and, in addition, by introducing a proper generalized AdS/CFT prescription. We also show how this extended formulation could be used to consistently describe double-trace interactions in the boundary. The formalism is illustrated by focusing on the non-minimally coupled case using Dirichlet boundary conditions. © 2004 Published by Elsevier B.V.
Resumo:
An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement. © 2008 IEEE.
Resumo:
We study the boundary of the 3-dimensional Rauzy fractal ε ⊂ ℝ×ℂ generated by the polynomial P(x) Dx 4-x 3-x 2-x-1. The finite automaton characterizing the boundary of ε is given explicitly. As a consequence we prove that the set ε has 18 neighboors where 6 of them intersect the central tile ε in a point. Our construction shows that the boundary is generated by an iterated function system starting with 2 compact sets.
Resumo:
The main goal of the present work is to verify the applicability of the Immersed Boundary Method together with the Virtual Physical Model to solve the flow through automatic valves of hermetic compressors. The valve was simplified to a two-dimensional radial diffuser, with diameter ratio of D/d = 1.5, and simulated for a one cycle of opening and closing process with a imposed velocity of 3.0 cm/s for the reed, dimensionless gap between disks in the range of 0.07 < s/d < 0.10, and inlet Reynolds number equal to 1500. The good results obtained showed that the methodology has great potential as project tool for this type of valve systems. © The Authors, 2011.
Resumo:
This work presents an application of a Boundary Element Method (BEM) formulation for anisotropic body analysis using isotropic fundamental solution. The anisotropy is considered by expressing a residual elastic tensor as the difference of the anisotropic and isotropic elastic tensors. Internal variables and cell discretization of the domain are considered. Masonry is a composite material consisting of bricks (masonry units), mortar and the bond between them and it is necessary to take account of anisotropy in this type of structure. The paper presents the formulation, the elastic tensor of the anisotropic medium properties and the algebraic procedure. Two examples are shown to validate the formulation and good agreement was obtained when comparing analytical and numerical results. Two further examples in which masonry walls were simulated, are used to demonstrate that the presented formulation shows close agreement between BE numerical results and different Finite Element (FE) models. © 2012 Elsevier Ltd.
Resumo:
In this paper, an exact series solution for the vibration analysis of circular cylindrical shells with arbitrary boundary conditions is obtained, using the elastic equations based on Flügge's theory. Each of the three displacements is represented by a Fourier series and auxiliary functions and sought in a strong form by letting the solution exactly satisfy both the governing differential equations and the boundary conditions on a point-wise basis. Since the series solution has to be truncated for numerical implementation, the term exactly satisfying should be understood as a satisfaction with arbitrary precision. One of the important advantages of this approach is that it can be universally applied to shells with a variety of different boundary conditions, without the need of making any corresponding modifications to the solution algorithms and implementation procedures as typically required in other techniques. Furthermore, the current method can be easily used to deal with more complicated boundary conditions such as point supports, partial supports, and non-uniform elastic restraints. Numerical examples are presented regarding the modal parameters of shells with various boundary conditions. The capacity and reliability of this solution method are demonstrated through these examples. © 2012 Elsevier Ltd. All rights reserved.