119 resultados para arachidonic acid metabolism inhibitors
Resumo:
A desnutrição protéico-energética constitui problema comum aos pacientes com insuficiência renal crônica, influenciando diretamente na sua morbi-mortalidade. A acidose metabólica tem papel no catabolismo protéico, ativando a via proteolítica proteasoma-ubiquitina, dependente de adenosina trifosfato, e conjuntamente com glicocorticóides induz uma maior atividade na desidrogenase que degrada os aminoácidos de cadeia ramificada. Esta revisão teve como objetivo descrever o mecanismo pelo qual a acidose metabólica nos pacientes com insuficiência renal crônica promove o catabolismo protéico, favorecendo assim a desnutrição, bem como avaliar os efeitos do uso de bicarbonato de sódio na correção da acidose e conseqüentemente redução do catabolismo protéico. Pesquisas mostram melhora da acidose pelo uso de bicarbonato de sódio e conseqüente redução do catabolismo protéico na insuficiência renal crônica, podendo ser esta uma conduta promissora na atenuação da desnutrição nestes pacientes.
Resumo:
Mesembryanthemum crystallinum L. (Aizoaceae) is a facultative annual halophyte and a C-3-photosynthesis/crassulacean acid metabolism intermediate species currently used as a model plant in stress physiology. Both salinity and high light irradiance stress are known to induce CAM in this species. The present study was performed to provide a diagnosis of alterations at the photosystem 11 level during salinity and irradiance stress. Plants were subjected for up to 13 days to either 0.4M NaCl salinity or high irradiance of 1000 mu mol m(-2) s(-1), as well as to both stress factors combined (LLSA = low light plus salt; HLCO = high light of 1000 mu mol m(-2)s(-1), no salt; HLSA = high light plus salt). A control of LLCO = low light of 200 mu mol m(-2) s(-1), no salt was used. Parameters of chlorophyll a fluorescence of photosystem 11 (PSII) were measured with a pulse amplitude modulated fluorometer. HLCO and LLSA conditions induced a weak degree of CAM with day/night changes of malate levels (Delta malate) of similar to 12 mM in the course of the experiment, while HLSA induced stronger CAM of Delta malate similar to 20mM. Effective quantum yield of PSII, Delta F/F'(m), was only slightly affected by LLSA, somewhat reduced during the course of the experiment by HLCO and clearly reduced by HLSA. Potential quantum efficiency of PSII, F-v/F-m, at predawn times was not affected by any of the conditions, always remaining at >= 0.8, showing that there was no acute photoinhibition. During the course of the days HL alone (HLCO) also did not elicit photoinhibition; salt alone (LLSA) caused acute photoinhibition which was amplified by the combination of the two stresses (HLSA). Non-photochemical, NPQ, quenching remained low (< 0.5) under LLCO, LLSA and HLCO and increased during the course of the experiment under HLSA to 1-2. Maximum apparent photosynthetic electron transport rates, ETRmax, declined during the daily courses and were reduced by LLSA and to a similar extent by HLSA. It is concluded that A crystallinum expresses effective stress tolerance mechanisms but photosynthetic capacity is reduced by the synergistic effects of salinity and tight irradiance stress combined. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Background and Objectives. A frequent mutation in the cystathionine β- synthase (CBS) gene (844ins68, a 68-bp insertion in the coding region of exon 8) was recently discovered. In the present study we investigated this mutation as a candidate risk factor for venous thrombosis. Design and Methods. The prevalence of the 844ins68 CBS mutation was determined in 101 patients with objectively diagnosed deep venous thrombosis and in 101 healthy controls matched for age, sex and race. PCR amplification of a DNA fragment containing exon 8 of the CBS gene was employed to determine the genotypes. Additionally, Bsrl restriction enzyme digestion of the PCR products was performed in all samples from carriers of the insertion, to test for concurrent presence of a second mutation (T833C) in the CBS gene. Results. The insertion was found in 21 out of 101 patients (20.8%; allele frequency 0.109) and in 20 out of 101 controls (19.8%; allele frequency 0.114), yielding a relative risk for venous thrombosis related to the 844ins68 CBS mutation close to 1.0. In addition, the T833C CBS mutation was detected in all alleles carrying the 844ins68 CBS insertion, confirming the co- inheritance of the two mutations. Interpretation and Conclusions. Our findings do not support the hypothesis that the 844ins68 mutation in the CBS gene is a genetic risk factor for venous thrombosis.
Resumo:
Type-1 diabetes patients suffer from frequent episodes of acidosis caused by an increased fatty acid metabolism and consequently increased plasma level of acetoacetate (AcAc) and β-hydroxybutyrate (β-HOB). This article describes a study of the effects of pathological concentrations of AcAc and β-HOB on lipoperoxidation, cell viability and the release of the CXCL8 (IL-8) cytokine by activated neutrophils. Neutrophils from healthy donors were isolated by density gradient (Histopaque® 1077/1119) and incubated with the ketone bodies. Lipoperoxidation was determined as thiobarbituric acid reactive substances (TBARS). The cell viability was evaluated by the release of intracellular lactate dehydrogenase. The release of CXCL8 was measured by ELISA in a 24-h culture of opsonized zymosan-stimulated neutrophils. AcAc, but not β-HOB, provoked a dose-dependent increase in the neutrophil membrane lipoperoxidation (p<0.05; r =0.9915). In the cytotoxicity assay, a dose-dependent release of LDH was observed when the neutrophils were incubated with AcAc in concentrations up to 40 mM (p<0.05). β-HOB was devoid of effect. The release of CXCL8 was inhibited by AcAc and β-HOB in a dose-dependent manner. In conclusion, these results suggest that the accumulation of ketone bodies in diabetic patients could be involved in their usually increased susceptibility to infection.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Accumulating evidence demonstrates that chronic inflammation plays an important role in heart hypertrophy and cardiac diseases. However, the fine-tuning of cellular and molecular mechanisms that connect inflammatory process and cardiac diseases is still under investigation. Many reports have demonstrated that the overexpression of the cyclooxygenase-2 (COX-2), a key enzyme in the conversion of arachidonic acid to prostaglandins and other prostanoids, is correlated with inflammatory processes. Increased level of prostaglandin E2 was also found in animal model of left ventricle of hypertrophy. Based on previous observations that demonstrated a regulatory loop between COX-2 and the RNA-binding protein CUGBP2, we studied cellular and molecular mechanisms of a pro-inflammatory stimulus in a cardiac cell to verify if the above two molecules could be correlated with the inflammatory process in the heart. A cellular model of investigation was established and H9c2 was used.We also demonstrated a regulatory connection between COX-2 and CUGBP2 in the cardiac cells. Based on a set of different assays including gene silencing and fluorescence microscopy, we describe a novel function for the RNA-binding protein CUGBP2 in controlling the pro-inflammatory stimulus: subcellular trafficking of messenger molecules to specific cytoplasmic stress granules to maintain homeostasis. © 2013 International Federation for Cell Biology.
Resumo:
The marine environment offers both economic and scientific potential which are relatively untapped from a biotechnological point of view. These environments whilst harsh are ironically fragile and dependent on a harmonious life form balance. Exploitation of natural resources by exhaustive wild harvesting has obvious negative environmental consequences. From a European industry perspective marine organisms are a largely underutilised resource. This is not due to lack of interest but due to a lack of choice the industry faces for cost competitive, sustainable and environmentally conscientious product alternatives. Knowledge of the biotechnological potential of marine organisms together with the development of sustainable systems for their cultivation, processing and utilisation are essential. In 2010, the European Commission recognised this need and funded a collaborative RTD/SME project under the Framework 7-Knowledge Based Bio-Economy (KBBE) Theme 2 Programme 'Sustainable culture of marine microorganisms, algae and/or invertebrates for high value added products'. The scope of that project entitled 'Sustainable Production of Biologically Active Molecules of Marine Based Origin' (BAMMBO) is outlined. Although the Union is a global leader in many technologies, it faces increasing competition from traditional rivals and emerging economies alike and must therefore improve its innovation performance. For this reason innovation is placed at the heart of a European Horizon 2020 Strategy wherein the challenge is to connect economic performance to eco performance. This article provides a synopsis of the research activities of the BAMMBO project as they fit within the wider scope of sustainable environmentally conscientious marine resource exploitation for high-value biomolecules. © 2013 Elsevier B.V.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Doenças Tropicais - FMB
Resumo:
Pós-graduação em Microbiologia Agropecuária - FCAV
Resumo:
Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)