42 resultados para ansatz
Resumo:
We consider a field theory with target space being the two dimensional sphere S2 and defined on the space-time S3 × . The Lagrangean is the square of the pull-back of the area form on S2. It is invariant under the conformal group SO(4,2) and the infinite dimensional group of area preserving diffeomorphisms of S2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group. © SISSA 2006.
Resumo:
In this work we discuss the strength of the trilinear Higgs boson coupling in composite models in a model independent way. The coupling is determined as a function of a very general ansatz for the fermionic self-energy, and turns out to be equal or smaller than the one of the Standard Model Higgs boson depending on the dynamics of the theory. © World Scientific Publishing Company.
Resumo:
We modify the ansatz for embedding chameleon scalars in string theory proposed in [1] by considering a racetrack superpotential with two KKLT-type exponentials e ia instead of one. This satisfies all experimental constraints, while also allowing for the chameleon to be light enough on cosmological scales to be phenomenologically interesting. © 2013 SISSA, Trieste, Italy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Física - IFT
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Física - IFT