163 resultados para abutment


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose:The purpose of this study was to evaluate stress transfer patterns between implant-tooth-connected prostheses comparing rigid and semirigid connectors and internal and external hexagon implants.Materials and Methods:Two models were made of photoelastic resin PL-2, with an internal hexagon implant of 4.00 x 13 mm and another with an external hexagon implant of 4.00 x 13 mm. Three denture designs were fabricated for each implant model, incorporating one type of connection in each one to connect implants and teeth: 1) welded rigid connection; 2) semirigid connection; and 3) rigid connection with occlusal screw. The models were placed in the polariscope, and 100-N axial forces were applied on fixed points on the occlusal surface of the dentures.Results:There was a trend toward less intensity in the stresses on the semirigid connection and solid rigid connection in the model with the external hexagon; among the three types of connections in the model with the internal hexagon implant, the semirigid connection was the most unfavorable one; in the tooth-implant association, it is preferable to use the external hexagon implant.Conclusions:The internal hexagon implant establishes a greater depth of hexagon retention and an increase in the level of denture stability in comparison with the implant with the external hexagon. However, this greater stability of the internal hexagon generated greater stresses in the abutment structures. Therefore, when this association is necessary, it is preferable to use the external hexagon implant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The vertical location of the implant-abutment connection influences the periimplant bone morphology. It is unknown, however, whether different microgap configurations cause different bone reactions. Therefore, in this study the bone morphologies of two different implant systems were compared.Material and methods: Three months after tooth extraction in eight mongrel dogs, two grit-blasted screw implants with internal Morse taper connection (ANK group) were placed on one side whereas the contralateral side received two oxidized screw implants with external hex (TIU group). One implant on each side was placed level with the bone (equicrestal), the second implant was inserted 1.5mm below bone level (subcrestal). After 3 months the implants were uncovered. Three months after stage two surgery, histometrical evaluations were performed in order to assess the periimplant bone levels (PBL), the first bone-to-implant contact points (BICP), the width (HBD) and the steepness (SLO) of the bone defect.Results: All implants osseointegrated clinically and histologically. Bone overgrowth of the microgap was seen in ANK implants only. No significant differences between ANK and TIU could be detected in neither vertical position for PBL and BICP. However, a tendency in favor of ANK was visible when the implants were placed subcrestally. In the parameters HBD (ANK equicrestal -0.23mm; TIU equicrestal -0.51mm; ANK subcrestal +0.19mm; TIU subcrestal -0.57mm) and SLO (ANK equicrestal 35.36 degrees; TIU equicrestal 63.22 degrees; ANK subcrestal 20.40 degrees; TIU subcrestal 44.43 degrees) more pronounced and significant differences were noted.Conclusions: Within the limits of this study, it is concluded that different microgap designs cause different shapes and sizes of the periimplant ('dish-shaped') bone defect in submerged implants both in equicrestal and subcrestal positions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The vertical location of the implant-abutment connection influences the subsequent reaction of the peri-implant bone. It is not known, however, whether any additional influence is exerted by different microgap configurations. Therefore, the radiographic bone reactions of two different implant systems were monitored for 6 months. Materials and Methods: In eight mongrel dogs, two implants with an internal Morse-taper connection (INT group) were placed on one side of the mandible; the contralateral side received two implants with an external-hex connection (EXT group). on each side, one implant was aligned at the bone level (equicrestal) and the second implant was placed 1.5 mm subcrestal. Healing abutments were placed 3 months after submerged healing, and the implants were maintained for another 3 months without prosthetic loading. At implant placement and after 1, 2, 3, 4, 5, and 6 months, standardized radiographs were obtained, and peri-implant bone levels were measured with regard to microgap location and evaluated statistically. Results: All implants osseointegrated clinically and radiographically. The overall mean bone loss was 0.68 +/- 0.59 mm in the equicrestal INT group, 1.32 +/- 0.49 mm in the equicrestal EXT group, 0.76 +/- 0.49 mm in the subcrestal INT group, and 1.88 +/- 0.81 mm in the subcrestal EXT group. The differences between the INT and EXT groups were statistically significant (paired t tests). The first significant differences between the internal and external groups were seen at month 1 in the subcrestal groups and at 3 months in the equicrestal groups. Bone loss was most pronounced in the subcrestal EXT group. Conclusions: Within the limits of this study, different microgap configurations can cause different amounts of bone loss, even before prosthetic loading. Subcrestal placement of a butt-joint microgap design may lead to more pronounced radiographic bone loss. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:941-946

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the influence of the platform-switching technique on stress distribution in implant, abutment, and pen-implant tissues, through a 3-dimensional finite element study. Three 3-dimensional mandibular models were fabricated using the Solid Works 2006 and InVesalius software. Each model was composed of a bone block with one implant 10 mm long and of different diameters (3.75 and 5.00 mm). The UCLA abutments also ranged in diameter from 5.00 mm to 4.1 mm. After obtaining the geometries, the models were transferred to the software FEMAP 10.0 for pre- and postprocessing of finite elements to generate the mesh, loading, and boundary conditions. A total load of 200 N was applied in axial (0 degrees), oblique (45 degrees), and lateral (90) directions. The models were solved by the software NeiNastran 9.0 and transferred to the software FEMAP 10.0 to obtain the results that were visualized through von Mises and maximum principal stress maps. Model A (implants with 3.75 mm/abutment with 4.1 mm) exhibited the highest area of stress concentration with all loadings (axial, oblique, and lateral) for the implant and the abutment. All models presented the stress areas at the abutment level and at the implant/abutment interface. Models B (implant with 5.0 mm/abutment with 5.0 mm) and C (implant with 5.0 mm/abutment with 4.1 mm) presented minor areas of stress concentration and similar distribution pattern. For the cortical bone, low stress concentration was observed in the pen-implant region for models B and C in comparison to model A. The trabecular bone exhibited low stress that was well distributed in models B and C. Model A presented the highest stress concentration. Model B exhibited better stress distribution. There was no significant difference between the large-diameter implants (models B and C).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The aim of this study was to evaluate by means of digital radiography the behavior of the alveolar bone crest in external hexagon implants following the use of 2 different types of abutments, one for conventional cemented prosthesis and one for modified cemented prosthesis.Methods: Ten external hexagon implants (platform 4.1) were placed in 5 patients. Initial instrumentation was carried out to obtain primary stability of the temporary prostheses under immediate loading. Each patient received both abutments for conventional and modified cemented prosthesis. Standardized digital periapical radiographies were performed at times T0 (immediately after implant placement) and T1 (4 months after implant placement). A straight line was initially established from the implant platform to the distal and mesial periimplantar marginal bone tissue (immediately in contact with the implant) and measured by digital radiography, using Sidexis version 2.3 (Sirona Dental Systems GmbH, Bensheim, Germany) software. The data were submitted to paired-samples t-test analysis.Results: There was no significant difference between the conventional and modified cemented prosthesis. In both cases, t-test results were within the null hypothesis level.Conclusion: The abutment for the modified cemented prosthesis resulted in no significant radiographic difference of alveolar bone crest height, when compared with the conventional cemented prostheses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The implant-abutment connection (microgap) influences the pen-implant bone morphology. However, it is unclear if different microgap configurations additionally modify bone reactions. This preliminary study aimed to radiographically monitor pen-implant bone levels in two different microgap configurations during 3 months of nonsubmerged healing. Materials and Methods: Six dogs received two implants with internal Morse taper connection (INT group) on one side of the mandible and two implants with external-hex connection (EXT group) on the other side. One implant on each side was positioned at bone level (equicrestal); the second implant was inserted 1.5 mm below the bone crest (subcrestal). Healing abutments were attached directly after implant insertion, and the implants were maintained for 3 months without prosthetic loading. At implant placement and 1, 2, and 3 months, standardized radiographs were taken to monitor pen-implant bone levels. Results: All implants osseointegrated. A total bone loss of 0.48 +/- 0.66 mm was measured in the equicrestal INT group, 0.69 +/- 0.43 mm in the equicrestal EXT group, 0.79 +/- 0.93 mm in the subcrestal INT group, and 1.56 +/- 0.53 mm in the subcrestal EXT group (P>.05, paired t tests). Within the four groups, bone loss over time became significantly greater in the EXT groups than in the INT groups. The greatest bone loss was noted in the subcrestal EXT group. Conclusion: Within the limits of this animal study, it seems that even without prosthetic loading, different microgap configurations exhibit different patterns of bone loss during nonsubmerged healing. Subcrestal positioning of an external butt joint microgap may lead to faster radiographic bone loss. Int J Prosthodont 2011;24:445-452.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the stress distribution of platform switching implants using a photoelastic method. Three models were constructed of the photoelastic resin PL-2, with a single implant and a screw-retained implant-supported prosthesis. These models were Model A, platform 5.0 mm/abutment 4.1 mm; Model B, platform 4.1 mm/abutment 4.1 mm; and Model C, platform 5.00 mm/abutment 5.00 mm. Axial and oblique (45 degrees) loads of 100 N were applied using a Universal Testing Machine (EMIC DL 3000). Images were photographed with a digital camera and visualized with software (AdobePhotoshop) to facilitate the qualitative analysis. The highest stress concentrations were observed at the apical third of the 3 models. With the oblique load, the highest stress concentrations were located at the implant apex, opposite the load application. Stress concentrations decreased in the cervical region of Model A (platform switching), and Models A (platform switching) and C (conventional/wide-diameter) displayed similar stress magnitudes. Finally, Model B (conventional/regular diameter) displayed the highest stress concentrations of the models tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: It is unknown whether different micro gap configurations can cause different pen-implant bone reactions. Therefore, this study sought to compare the peri-implant bone morphologies of two implant systems with different implant-abutment connections. Materials and Methods: Three months after mandibular tooth extractions in six mongrel dogs, two oxidized screw implants with an external-hex connection were inserted (hexed group) on one side, whereas on the contralateral side two grit-blasted screw implants with an internal Morse-taper connection (Morse group) were placed. on each side, one implant was inserted level with the bone (equicrestal) and the second implant was inserted 1.5 mm below the bony crest (subcrestal). Healing abutments were inserted immediately after implant placement. Three months later, the peri-implant bone levels, the first bone-to-implant contact points, and the width and steepness of the peri-implant bone defects were evaluated histometrically. Results: All 24 implants osseointegrated clinically and histologically. No statistically significant differences between the hexed group and Morse group were detected for either the vertical position for peri-implant bone levels (Morse equicrestal -0.16 mm, hexed equicrestal -0.22 mm, Morse subcrestal 1.50 mm, hexed subcrestal 0.94 mm) or for the first bone-to-implant contact points (Morse equicrestal -2.08 mm, hexed equicrestal -0.98 mm, Morse subcrestal -1.26 mm, hexed subcrestal -0.76 mm). For the parameters width (Morse equicrestal -0.15 mm, hexed equicrestal -0.59 mm, Morse subcrestal 0.28 mm, hexed subcrestal -0.70 mm) and steepness (Morse equicrestal 25.27 degree, hexed equicrestal 57.21 degree, Morse subcrestal 15.35 degree, hexed subcrestal 37.97 degree) of the pen-implant defect, highly significant differences were noted between the Morse group and the hexed group. Conclusion: Within the limits of this experiment, it can be concluded that different microgap configurations influence the size and shape of the peri-implant bone defect in nonsubmerged implants placed both at the crest and subcrestally. INT J ORAL MAXILLOFAC IMPLANTS 2010;25:540-547

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to compare the stress distribution induced by posterior functional loads on conventional complete dentures and implant-retained overdentures with different attachment systems using a two-dimentional Finite Element Analysis (FEA-2D). Three models representative of edentulous mandible were constructed on AutoCAD software; Group A (control), a model of edentulous mandible supporting a complete denture; Group B, a model of edentulous mandible supporting an overdenture over two splinted implants connected with the bar-clip system; Group C, a model of edentuluos mandible supporting an overdenture over two unsplinted impants with the O-ring system. Evaluation was conducted on Ansys software, with a vertical force of 100 N applied on the mandibular left first molar. When the stress was evaluated in supporting tissues, groups B (51.0 MPa) and C (52.6 MPa) demonstrated higher stress values than group A (10.1 MPa). Within the limits of this study, it may be conclued that the use of an attachment system increased stress values; furthermore, the use of splinted implants associated with the bar-clip attachment system favoured a lower stress distribution over the supporting tissue than the unsplinted implants with an O-ring abutment to retain the manibular overdenture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Materials and Methods: Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Results: Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Conclusion: Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:482-491

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. Implant overdenture prostheses are prone to acrylic resin fracture because of space limitations around the implant overdenture components.Purpose. The purpose of this study was to evaluate the influence of E-glass fibers and acrylic resin thickness in resisting acrylic resin fracture around a simulated overdenture abutment.Material and methods. A model was developed to simulate the clinical situation of an implant overdenture abutment with varying acrylic resin thickness (1.5 or 3.0 mm) with or without E-glass fiber reinforcement. Forty-eight specimens with an underlying simulated abutment were divided into 4 groups (n=12): 1.5 mm acrylic resin without E-glass fibers identified as thin with no E-glass fiber mesh (TN-N); 1.5 mm acrylic resin with E-glass fibers identified as thin with E-glass fiber mesh (TN-F); 3.0 mm acrylic resin without E-glass fibers identified as thick without E-glass fiber mesh (TK-N); and 3.0 mm acrylic resin with E-glass fibers identified as thick with E-glass fiber mesh (TK-F). All specimens were submitted to a 3-point bending test and fracture loads (N) were analyzed with a 2-way ANOVA and Tukey's post hoc test (alpha=.05).Results. The results revealed significant differences in fracture load among the 4 groups, with significant effects from both thickness (P<.001) and inclusion of the mesh (P<.001). Results demonstrated no interaction between mesh and thickness (P=.690). The TN-N: 39 +/- 5 N; TN-F: 50 +/- 6.9 N; TK-N: 162 +/- 13 N; and TK-F: 193 +/- 21 N groups were all statistically different (P<.001).Conclusions. The fracture load of a processed, acrylic resin implant-supported overdenture can be significantly increased by the addition of E-glass fibers even when using thin acrylic resin sections. on a relative basis, the increase in fracture load was similar when adding E-glass fibers or increasing acrylic resin thickness. (J Prosthet Dent 2011;106:373-377)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Three-dimensional finite element analysis was used to evaluate the effect of vertical and angular misfit in three-piece implant-supported screw-retained fixed prostheses on the biomechanical response in the peri-implant bone, implants, and prosthetic components. Materials and Methods: Four three-dimensional models were fabricated to represent a right posterior mandibular section with one implant in the region of the second premolar (2PM) and another in the region of the second molar (2M). The implants were splinted by a three-piece implant-supported metal-ceramic prosthesis and differed according to the type of misfit, as represented by four different models: Control = prosthesis with complete fit to the implants; UAM (unilateral angular misfit) = prosthesis presenting unilateral angular misfit of 100 pm in the mesial region of the 2M; UVM (unilateral vertical misfit) = prosthesis presenting unilateral vertical misfit of 100 pm in the mesial region of the 2M; and TVM (total vertical misfit) = prosthesis presenting total vertical misfit of 100 pm in the platform of the framework in the 2M. A vertical load of 400 N was distributed and applied on 12 centric points by the software Ansys, ie, a vertical load of 150 N was applied to each molar in the prosthesis and a vertical load of 100 N was applied at the 2PM. Results: The stress values and distribution in peri-implant bone tissue were similar for all groups. The models with misfit exhibited different distribution patterns and increased stress magnitude in comparison to the control. The highest stress values in group UAM were observed in the implant body and retention screw. The groups UVM and TVM exhibited high stress values in the platform of the framework and the implant hexagon, respectively. Conclusions: The three types of misfit influenced the magnitude and distribution of stresses. The influence of misfit on peri-implant bone tissue was modest. Each type of misfit increased the stress values in different regions of the system. INT J ORAL MAXILLOFAC IMPLANTS 2011;26:788-796

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In implant therapy, a peri-implant bone resorption has been noticed mainly in the first year after prosthesis insertion. This bone remodeling can sometimes jeopardize the outcome of the treatment, especially in areas in which short implants are used and also in aesthetic cases. To avoid this occurrence, the use of platform switching (PS) has been used. This study aimed to evaluate the biomechanical concept of PS with relation to stress distribution using two-dimensional finite element analysis. A regular matching diameter connection of abutment-implant (regular platform group [RPG]) and a PS connection (PS group [PSG]) were simulated by 2 two-dimensional finite element models that reproduced a 2-piece implant system with peri-implant bone tissue. A regular implant (prosthetic platform of 4.1 mm) and a wide implant (prosthetic platform of 5.0 mm) were used to represent the RPG and PSG, respectively, in which a regular prosthetic component of 4.1 mm was connected to represent the crown. A load of 100 N was applied on the models using ANSYS software. The RPG spreads the stress over a wider area in the peri-implant bone tissue (159 MPa) and the implant (1610 MPa), whereas the PSG seems to diminish the stress distribution on bone tissue (34 MPa) and implant (649 MPa). Within the limitation of the study, the PS presented better biomechanical behavior in relation to stress distribution on the implant but especially in the bone tissue (80% less). However, in the crown and retention screw, an increase in stress concentration was observed.